The Jordan Plane over a Field of Positive Characteristic
Matematičeskie zametki, Tome 82 (2007) no. 2, pp. 272-292.

Voir la notice de l'article provenant de la source Math-Net.Ru

The primary spectrum and the automorphism group of the Jordan plane over a field of nonzero characteristic are described. The problem of extending a prime ideal of the center of the Jordan plane to a primary ideal of the entire algebra is considered.
Keywords: Jordan plane, primary ideal, prime ideal, completely primary ideal.
Mots-clés : minimal polynomial, automorphism group
@article{MZM_2007_82_2_a11,
     author = {E. N. Shirikov},
     title = {The {Jordan} {Plane} over a {Field} of {Positive} {Characteristic}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {272--292},
     publisher = {mathdoc},
     volume = {82},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a11/}
}
TY  - JOUR
AU  - E. N. Shirikov
TI  - The Jordan Plane over a Field of Positive Characteristic
JO  - Matematičeskie zametki
PY  - 2007
SP  - 272
EP  - 292
VL  - 82
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a11/
LA  - ru
ID  - MZM_2007_82_2_a11
ER  - 
%0 Journal Article
%A E. N. Shirikov
%T The Jordan Plane over a Field of Positive Characteristic
%J Matematičeskie zametki
%D 2007
%P 272-292
%V 82
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a11/
%G ru
%F MZM_2007_82_2_a11
E. N. Shirikov. The Jordan Plane over a Field of Positive Characteristic. Matematičeskie zametki, Tome 82 (2007) no. 2, pp. 272-292. http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a11/

[1] E. N. Shirikov, “Two-generated graded algebras”, Algebra Discrete Math., 2005, no. 3, 64–80 | MR | Zbl

[2] J. C. McConnell, J. C. Robson, Noncommutative Noetherian Rings, With the cooperation of L. W. Small, Pure and Applied Mathematics, John Wiley Sons, Chichester–New York–Birsbane–Toronto–Singapore, 1987 | MR | Zbl

[3] O. Ore, “Theory of non-commutative polynomials”, Ann. of Math. (2), 34:3 (1933), 480–508 | DOI | MR | Zbl

[4] K. A. Brown, K. R. Goodearl, Lectures on Algebraic Quantum Groups, Advanced Courses in Mathematics. CRM Barcelona, Birkhäuser, Basel, 2002 | MR | Zbl

[5] V. A. Artamonov, “Kvantovaya problema Serra”, UMN, 53:4 (1998), 3–76 | MR | Zbl

[6] V. A. Artamonov, “Automorphisms and derivations of quantum polynomials”, Recent Advances in Lie Theory (Vigo, 2000), Res. Exp. Math., 25, Heldermann Verlag, Lemgo, 2002, 109–120 | MR | Zbl

[7] V. A. Artamonov, “Action of Hopf algebras on generic quantum Malcev power series and quantum planes”, J. Math. Sci. (N. Y.), 134:1 (2006), 1773–1798 | DOI | MR | Zbl

[8] V. A. Jategaonkar, “A multiplicative analog of the Weyl algebra”, Comm. Algebra, 12:13–14 (1984), 1669–1688 | DOI | MR | Zbl

[9] I. Kherstein, Nekommutativnye koltsa, Mir, M., 1972 | MR | Zbl

[10] E. B. Vinberg, Kurs algebry, Faktorial Press, M., 2001 | MR | Zbl