Discretization of the Solutions of the Heat Equation
Matematičeskie zametki, Tome 82 (2007) no. 2, pp. 177-182.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain the exact order of discretization (reconstruction) errors, given linear information on the solutions of the heat equation.
Keywords: heat equation, Cauchy problem, discretization error, Sobolev function classes, Schmidt orthogonalization method.
Mots-clés : Fourier–Lebesgue trigonometric coefficients
@article{MZM_2007_82_2_a1,
     author = {Sh. U. Azhgaliev},
     title = {Discretization of the {Solutions} of the {Heat} {Equation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {177--182},
     publisher = {mathdoc},
     volume = {82},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a1/}
}
TY  - JOUR
AU  - Sh. U. Azhgaliev
TI  - Discretization of the Solutions of the Heat Equation
JO  - Matematičeskie zametki
PY  - 2007
SP  - 177
EP  - 182
VL  - 82
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a1/
LA  - ru
ID  - MZM_2007_82_2_a1
ER  - 
%0 Journal Article
%A Sh. U. Azhgaliev
%T Discretization of the Solutions of the Heat Equation
%J Matematičeskie zametki
%D 2007
%P 177-182
%V 82
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a1/
%G ru
%F MZM_2007_82_2_a1
Sh. U. Azhgaliev. Discretization of the Solutions of the Heat Equation. Matematičeskie zametki, Tome 82 (2007) no. 2, pp. 177-182. http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a1/

[1] N. Temirgaliev, “Teoretiko-chislovye metody i teoretiko-veroyatnostnyi podkhod k zadacham analiza. Teoriya vlozhenii i priblizhenii, absolyutnaya skhodimost i preobrazovanie ryadov Fure”, Vestn. Evraziiskogo un-ta, 1997, no. 3, 90–144 | MR

[2] N. Temirgaliev, “Teoretiko-chislovye metody i teoretiko-veroyatnostnyi podkhod k zadacham analiza. Teoriya vlozhenii i priblizhenii, absolyutnaya skhodimost i preobrazovanie ryadov Fure (Prodolzhenie 1)”, Vestn. Evraziiskogo un-ta, 2002, no. 3–4, 222–272

[3] N. M. Korobov, Teoretiko-chislovye metody v priblizhennom analize, Fizmatgiz, M., 1963 | MR | Zbl

[4] S. A. Smolyak, “Kvadraturnye i interpolyatsionnye formuly na tenzornykh proizvedeniyakh nekotorykh klassov funktsii”, Dokl. AN SSSR, 148:5 (1963), 1042–1045 | MR | Zbl

[5] Loo Keng Hua, Yang Wang, Application of Number Theory to Numerical Analysis, Springer-Verlag, Berlin–Heidelberg–New York, 1981 | MR | Zbl

[6] K. E. Sherniyazov, Priblizhennoe vosstanovlenie funktsii i reshenii uravneniya teploprovodnosti s funktsiyami raspredeleniya nachalnykh temperatur iz klassov $E$, $SW$ i $B$, Dis. $\dots$ kand. fiz.-matem. nauk, KazGU im. al-Farabi, Almaty, 1998

[7] S. M. Nikolskii, Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR | Zbl