On the Algebra of Multidimensional Integral Operators with Homogeneous $SO(n)$-Invariant Kernels and Weakly Radially Oscillating Coefficients
Matematičeskie zametki, Tome 82 (2007) no. 2, pp. 163-176.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the Banach algebra $\mathfrak B$ generated by multidimensional integral operators whose kernels are homogeneous functions of degree $(-n)$ invariant with respect to the rotation group $SO(n)$ and by the operators of multiplication by radial weakly oscillating functions. A symbolic calculus is developed for the algebra $\mathfrak B$. The Fredholm property and the formula for calculating the index are described in terms of this calculus.
Keywords: Fredholm property, integral operators, operator algebra, index of a Fredholm operator, Banach algebra, locally oscillating function.
@article{MZM_2007_82_2_a0,
     author = {O. G. Avsyankin and V. M. Deundyak},
     title = {On the {Algebra} of {Multidimensional} {Integral} {Operators} with {Homogeneous} $SO(n)${-Invariant} {Kernels} and {Weakly} {Radially} {Oscillating} {Coefficients}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {163--176},
     publisher = {mathdoc},
     volume = {82},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a0/}
}
TY  - JOUR
AU  - O. G. Avsyankin
AU  - V. M. Deundyak
TI  - On the Algebra of Multidimensional Integral Operators with Homogeneous $SO(n)$-Invariant Kernels and Weakly Radially Oscillating Coefficients
JO  - Matematičeskie zametki
PY  - 2007
SP  - 163
EP  - 176
VL  - 82
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a0/
LA  - ru
ID  - MZM_2007_82_2_a0
ER  - 
%0 Journal Article
%A O. G. Avsyankin
%A V. M. Deundyak
%T On the Algebra of Multidimensional Integral Operators with Homogeneous $SO(n)$-Invariant Kernels and Weakly Radially Oscillating Coefficients
%J Matematičeskie zametki
%D 2007
%P 163-176
%V 82
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a0/
%G ru
%F MZM_2007_82_2_a0
O. G. Avsyankin; V. M. Deundyak. On the Algebra of Multidimensional Integral Operators with Homogeneous $SO(n)$-Invariant Kernels and Weakly Radially Oscillating Coefficients. Matematičeskie zametki, Tome 82 (2007) no. 2, pp. 163-176. http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a0/

[1] N. Karapetiants, S. Samko, Equations with Involutive Operators, Birkhäuser, Boston, MA, 2001 | MR | Zbl

[2] O. G. Avsyankin, N. K. Karapetyants, “Mnogomernye integralnye operatory s odnorodnymi stepeni $(-n)$ yadrami”, Dokl. RAN, 368:6 (1999), 727–729 | MR | Zbl

[3] O. G. Avsyankin, N. K. Karapetyants, “Ob algebre mnogomernykh integralnykh operatorov s odnorodnymi yadrami s peremennymi koeffitsientami”, Izv. vuzov. Ser. matem., 2001, no. 1, 3–10 | MR | Zbl

[4] O. G. Avsyankin, “Ob algebre parnykh integralnykh operatorov s odnorodnymi yadrami”, Matem. zametki, 73:4 (2003), 483–493 | MR | Zbl

[5] O. G. Avsyankin, V. M. Deundyak, “O vychislenii indeksa mnogomernykh integralnykh operatorov s biodnorodnymi yadrami”, Dokl. RAN, 391:1 (2003), 7–9 | MR | Zbl

[6] O. G. Avsyankin, V. M. Deundyak, “Ob indekse mnogomernykh integralnykh operatorov s biodnorodnymi yadrami i peremennymi koeffitsientami”, Izv. vuzov. Ser. matem., 2005, no. 3, 3–12 | MR | Zbl

[7] H. O. Cordess, “On compactness of commutators of multiplications and convolutions and boundness of pseudodifferential operators”, J. Funct. Anal., 18:2 (1975), 115–131 | DOI | MR | Zbl

[8] B. Ya. Shteinberg, “Ob operatorakh tipa svertki na lokalno kompaktnykh gruppakh”, Funkts. analiz i ego pril., 15:3 (1981), 95–96 | MR

[9] L. Khermander, Otsenki dlya operatorov, invariantnykh otnositelno sdviga, IL, M., 1962 | Zbl

[10] V. M. Deundyak, B. Ya. Shteinberg, “Ob indekse operatorov svertki s medlenno izmenyayuschimisya koeffitsientami na abelevykh gruppakh”, Funkts. analiz i ego pril., 19:4 (1985), 84–85 | MR | Zbl

[11] S. G. Samko, Gipersingulyarnye integraly i ikh prilozheniya, RGU, Rostov-na-Donu, 1984 | MR | Zbl

[12] O. G. Avsyankin, N. K. Karapetyants, “O kompaktnosti mnogomernykh integralnykh operatorov s odnorodnymi yadrami s peremennymi koeffitsientami”, Izv. vuzov. Sev.-Kavk. region. Estestvennye nauki, 2001, no. 4, 45–47 | MR | Zbl

[13] M. A. Naimark, Normirovannye koltsa, Nauka, M., 1968 | MR | Zbl