Expression for the Number of Eigenvalues of a Friedrichs Model
Matematičeskie zametki, Tome 82 (2007) no. 1, pp. 75-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the self-adjoint operator of a generalized Friedrichs model whose essential spectrum may contain lacunas. We obtain a formula for the number of eigenvalues lying on an arbitrary interval outside the essential spectrum of this operator. We find a sufficient condition for the discrete spectrum to be finite. Applying the formula for the number of eigenvalues, we show that there exist an infinite number of eigenvalues on the lacuna for a particular Friedrichs model and obtain the asymptotics for the number of eigenvalues.
Keywords: Friedrichs model, self-adjoint operator, essential spectrum of an operator, asymptotics for the number of eigenvalues, Weyl's inequality.
Mots-clés : lacuna
@article{MZM_2007_82_1_a8,
     author = {M. I. Muminov},
     title = {Expression for the {Number} of {Eigenvalues} of a {Friedrichs} {Model}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {75--83},
     publisher = {mathdoc},
     volume = {82},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a8/}
}
TY  - JOUR
AU  - M. I. Muminov
TI  - Expression for the Number of Eigenvalues of a Friedrichs Model
JO  - Matematičeskie zametki
PY  - 2007
SP  - 75
EP  - 83
VL  - 82
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a8/
LA  - ru
ID  - MZM_2007_82_1_a8
ER  - 
%0 Journal Article
%A M. I. Muminov
%T Expression for the Number of Eigenvalues of a Friedrichs Model
%J Matematičeskie zametki
%D 2007
%P 75-83
%V 82
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a8/
%G ru
%F MZM_2007_82_1_a8
M. I. Muminov. Expression for the Number of Eigenvalues of a Friedrichs Model. Matematičeskie zametki, Tome 82 (2007) no. 1, pp. 75-83. http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a8/

[1] L. D. Faddeev, “O modeli Fridrikhsa v teorii vozmuschenii nepreryvnogo spektra”, Kraevye zadachi matematicheskoi fiziki. 2, Tr. MIAN, 73, Nauka, M., 1964, 292–313 | MR | Zbl

[2] R. A. Minlos, Ya. G. Sinai, “Issledovanie spektrov stokhasticheskikh operatorov, voznikayuschikh v reshetchatykh modelyakh gaza”, TMF, 2:2 (1970), 230–243 | MR

[3] E. M. Dynkin, S. N. Naboko, S. I. Yakovlev, “Granitsa konechnosti singulyarnogo spektra v samosopryazhennoi modeli Fridrikhsa”, Algebra i analiz, 3:2 (1991), 77–90 | MR | Zbl

[4] A. A. Vladimirov, “Otsenki chisla sobstvennykh znachenii samosopryazhennykh operator-funktsii”, Matem. zametki, 74:6 (2003), 839–848 | MR | Zbl

[5] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, t. 4: Analiz operatorov, Mir, M., 1982 | MR | Zbl

[6] P. Khalmosh, Gilbertovo prostranstvo v zadachakh, Mir, M., 1970 | MR | Zbl

[7] A. V. Sobolev, “The Efimov effect. Discrete spectrum asymptotics”, Comm. Math. Phys., 156:1 (1993), 101–126 | DOI | MR | Zbl