Estimates of the Rate of Convergence of a Dynamic Reconstruction Algorithm under Incomplete Information about the Phase State
Matematičeskie zametki, Tome 82 (2007) no. 1, pp. 64-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study a dynamic reconstruction algorithm which reconstructs the unknown unbounded input and all unobservable phase coordinates from the results of measurements of part of the coordinates. An upper and a lower bound for the accuracy of the reconstruction is obtained. We determine the class of inputs for which the upper bound is uniform. We give a condition for optimally matching the algorithm parameters, ensuring the highest order of the upper bound and equating the orders of the upper and lower bounds. Thus, we establish the sharpness of the upper bound.
Keywords: nonlinear dynamical system, unobservable phase coordinates, optimal algorithm parameter matching.
Mots-clés : dynamic reconstruction algorithm
@article{MZM_2007_82_1_a7,
     author = {A. S. Mart'yanov},
     title = {Estimates of the {Rate} of {Convergence} of a {Dynamic} {Reconstruction} {Algorithm} under {Incomplete} {Information} about the {Phase} {State}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {64--74},
     publisher = {mathdoc},
     volume = {82},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a7/}
}
TY  - JOUR
AU  - A. S. Mart'yanov
TI  - Estimates of the Rate of Convergence of a Dynamic Reconstruction Algorithm under Incomplete Information about the Phase State
JO  - Matematičeskie zametki
PY  - 2007
SP  - 64
EP  - 74
VL  - 82
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a7/
LA  - ru
ID  - MZM_2007_82_1_a7
ER  - 
%0 Journal Article
%A A. S. Mart'yanov
%T Estimates of the Rate of Convergence of a Dynamic Reconstruction Algorithm under Incomplete Information about the Phase State
%J Matematičeskie zametki
%D 2007
%P 64-74
%V 82
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a7/
%G ru
%F MZM_2007_82_1_a7
A. S. Mart'yanov. Estimates of the Rate of Convergence of a Dynamic Reconstruction Algorithm under Incomplete Information about the Phase State. Matematičeskie zametki, Tome 82 (2007) no. 1, pp. 64-74. http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a7/

[1] A. S. Martyanov, “O rekonstruktsii upravlenii po izmereniyu chasti koordinat”, Izv. RAN. Teoriya i sistemy upravleniya, 2004, no. 4, 52–60 | MR

[2] A. V. Kryazhimskii, Yu. S. Osipov, “O modelirovanii upravleniya v dinamicheskoi sisteme”, Izv. AN SSSR. Tekh. kibernetika, 1983, no. 2, 51–60 | MR | Zbl

[3] Yu. S. Osipov, A. V. Kryazhimskii, Inverse Problems for Ordinary Differential Equations: Dynamical Solutions, Gordon and Breach Science Publishers, London, 1995 | MR | Zbl

[4] Yu. S. Osipov, A. V. Kryazhimskii, V. I. Maksimov, “Dinamicheskie obratnye zadachi dlya parabolicheskikh sistem”, Differents. uravneniya, 36:5 (2000), 579–597 | MR | Zbl

[5] A. I. Korotkii, I. A. Tsepelev, “Verkhnyaya i nizhnyaya otsenki tochnosti v zadache dinamicheskogo opredeleniya parametrov”, Trudy IMM UrO RAN, 4, Ekaterinburg, 1996, 227–238 | MR | Zbl

[6] E. V. Vasileva, “Nizhnie otsenki skhodimosti algoritmov dinamicheskoi rekonstruktsii dlya sistem s raspredelennymi parametrami”, Matem. zametki, 76:5 (2004), 675–687 | MR | Zbl

[7] V. I. Maksimov, Zadachi dinamicheskogo vosstanovleniya vkhodov beskonechnomernykh sistem, UrO RAN, Ekaterinburg, 2000

[8] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1988 | MR | Zbl