Spectrum and Spectral Decomposition of a Non-Self-Adjoint Differential Operator
Matematičeskie zametki, Tome 82 (2007) no. 1, pp. 58-63
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain the spectrum structures and the spectral decomposition of a non-self-adjoint differential operator $L$ generated by the differential expression $l[y]\equiv-y''+\alpha x^me^{i\mu x}y$, $m,\mu\ge1$, in the space $L_2(-\infty,\infty)$.
Keywords:
non-self-adjoint differential operator, spectral decomposition of an operator, the space $L_2(-\infty,\infty)$, resolvent of an operator, rational function, holomorphic continuation.
@article{MZM_2007_82_1_a6,
author = {M. Dzh. Manafov},
title = {Spectrum and {Spectral} {Decomposition} of a {Non-Self-Adjoint} {Differential} {Operator}},
journal = {Matemati\v{c}eskie zametki},
pages = {58--63},
publisher = {mathdoc},
volume = {82},
number = {1},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a6/}
}
M. Dzh. Manafov. Spectrum and Spectral Decomposition of a Non-Self-Adjoint Differential Operator. Matematičeskie zametki, Tome 82 (2007) no. 1, pp. 58-63. http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a6/