Generalized Jordan Matrix of a Linear Operator
Matematičeskie zametki, Tome 82 (2007) no. 1, pp. 27-35
Voir la notice de l'article provenant de la source Math-Net.Ru
For any linear operator defined over an arbitrary field $\mathbf k$, there is a basis in which this matrix is a generalized Jordan matrix (of the second kind) with elements in the field $\mathbf k$. For any linear operator, such a matrix is defined uniquely up to permutation of diagonal blocks.
Keywords:
linear operator over a field, generalized Jordan matrix, algebraically closed field, companion matrix, block-diagonal matrix, splitting field.
Mots-clés : Jordan normal form, Jordan cell
Mots-clés : Jordan normal form, Jordan cell
@article{MZM_2007_82_1_a3,
author = {S. G. Dalalyan},
title = {Generalized {Jordan} {Matrix} of a {Linear} {Operator}},
journal = {Matemati\v{c}eskie zametki},
pages = {27--35},
publisher = {mathdoc},
volume = {82},
number = {1},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a3/}
}
S. G. Dalalyan. Generalized Jordan Matrix of a Linear Operator. Matematičeskie zametki, Tome 82 (2007) no. 1, pp. 27-35. http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a3/