Generalized Jordan Matrix of a Linear Operator
Matematičeskie zametki, Tome 82 (2007) no. 1, pp. 27-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

For any linear operator defined over an arbitrary field $\mathbf k$, there is a basis in which this matrix is a generalized Jordan matrix (of the second kind) with elements in the field $\mathbf k$. For any linear operator, such a matrix is defined uniquely up to permutation of diagonal blocks.
Keywords: linear operator over a field, generalized Jordan matrix, algebraically closed field, companion matrix, block-diagonal matrix, splitting field.
Mots-clés : Jordan normal form, Jordan cell
@article{MZM_2007_82_1_a3,
     author = {S. G. Dalalyan},
     title = {Generalized {Jordan} {Matrix} of a {Linear} {Operator}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {27--35},
     publisher = {mathdoc},
     volume = {82},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a3/}
}
TY  - JOUR
AU  - S. G. Dalalyan
TI  - Generalized Jordan Matrix of a Linear Operator
JO  - Matematičeskie zametki
PY  - 2007
SP  - 27
EP  - 35
VL  - 82
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a3/
LA  - ru
ID  - MZM_2007_82_1_a3
ER  - 
%0 Journal Article
%A S. G. Dalalyan
%T Generalized Jordan Matrix of a Linear Operator
%J Matematičeskie zametki
%D 2007
%P 27-35
%V 82
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a3/
%G ru
%F MZM_2007_82_1_a3
S. G. Dalalyan. Generalized Jordan Matrix of a Linear Operator. Matematičeskie zametki, Tome 82 (2007) no. 1, pp. 27-35. http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a3/

[1] M. M. Postnikov, Lineinaya algebra i differentsialnaya geometriya, Lektsii po geometrii; Semestr 2, Nauka, M., 1979 | MR | Zbl

[2] A. I. Maltsev, Osnovy lineinoi algebry, Nauka, M., 1975 | MR | Zbl

[3] N. Burbaki, Algebra. Moduli, koltsa, formy, Nauka, M., 1966 | MR | Zbl | Zbl | Zbl

[4] S. Al Fakir, Algèbre et théorie des nombres: cryptographie, primalité, Ellipses, Paris, 2003 | Zbl

[5] M. Artin, Algebra, Prentice Hall, New Jersey, 1991 | MR | Zbl

[6] A. I. Kostrikin, Yu. I. Manin, Lineinaya algebra i geometriya, Nauka, M., 1986 | MR | Zbl

[7] S. G. Dalalyan, “Obobschennyi zhordanov normalnyi vid matritsy s separabelnymi neprivodimymi delitelyami kharakteristicheskogo mnogochlena”, Vestnik RA(S)GU, Fiz-mat. i estest. nauki, 1 (2005), 7–14

[8] I. R. Shafarevich, Osnovnye ponyatiya algebry, RKhD, M., 1999 | MR | Zbl

[9] S. Leng, Algebra, Mir, M., 1968 | MR | Zbl

[10] N. Burbaki, Algebra, Mnogochleny i polya. Uporyadochennye gruppy, Nauka, M., 1965 | MR | Zbl | Zbl