Terwilliger Graphs with $\mu\le3$
Matematičeskie zametki, Tome 82 (2007) no. 1, pp. 14-26
Voir la notice de l'article provenant de la source Math-Net.Ru
A Terwilliger graph is a noncomplete graph in which intersection of the neighborhoods of any two vertices at distance 2 from each other is a $\mu$-clique. We classify connected Terwilliger graphs with $\mu=3$ and describe the structure of Terwilliger graphs of diameter 2 with $\mu=2$.
Keywords:
undirected graph, regular graph, biregular graph, Terwilliger graph, edge regular graph, Fibonacci number, affine and projective plane.
Mots-clés : clique extension
Mots-clés : clique extension
@article{MZM_2007_82_1_a2,
author = {A. L. Gavrilyuk and A. A. Makhnev},
title = {Terwilliger {Graphs} with $\mu\le3$},
journal = {Matemati\v{c}eskie zametki},
pages = {14--26},
publisher = {mathdoc},
volume = {82},
number = {1},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a2/}
}
A. L. Gavrilyuk; A. A. Makhnev. Terwilliger Graphs with $\mu\le3$. Matematičeskie zametki, Tome 82 (2007) no. 1, pp. 14-26. http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a2/