Terwilliger Graphs with $\mu\le3$
Matematičeskie zametki, Tome 82 (2007) no. 1, pp. 14-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

A Terwilliger graph is a noncomplete graph in which intersection of the neighborhoods of any two vertices at distance 2 from each other is a $\mu$-clique. We classify connected Terwilliger graphs with $\mu=3$ and describe the structure of Terwilliger graphs of diameter 2 with $\mu=2$.
Keywords: undirected graph, regular graph, biregular graph, Terwilliger graph, edge regular graph, Fibonacci number, affine and projective plane.
Mots-clés : clique extension
@article{MZM_2007_82_1_a2,
     author = {A. L. Gavrilyuk and A. A. Makhnev},
     title = {Terwilliger {Graphs} with $\mu\le3$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {14--26},
     publisher = {mathdoc},
     volume = {82},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a2/}
}
TY  - JOUR
AU  - A. L. Gavrilyuk
AU  - A. A. Makhnev
TI  - Terwilliger Graphs with $\mu\le3$
JO  - Matematičeskie zametki
PY  - 2007
SP  - 14
EP  - 26
VL  - 82
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a2/
LA  - ru
ID  - MZM_2007_82_1_a2
ER  - 
%0 Journal Article
%A A. L. Gavrilyuk
%A A. A. Makhnev
%T Terwilliger Graphs with $\mu\le3$
%J Matematičeskie zametki
%D 2007
%P 14-26
%V 82
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a2/
%G ru
%F MZM_2007_82_1_a2
A. L. Gavrilyuk; A. A. Makhnev. Terwilliger Graphs with $\mu\le3$. Matematičeskie zametki, Tome 82 (2007) no. 1, pp. 14-26. http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a2/

[1] A. E. Brouwer, A. M. Cohen, A. Neumaier, Distance-Regular Graphs, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 18, Springer-Verlag, Berlin–Heidelberg–New York, 1989 | MR | Zbl

[2] A. A. Makhnev, “O regulyarnykh grafakh Tervilligera s $\mu=2$”, Sib. matem. zhurn., 37:5 (1996), 1132–1134 | MR | Zbl

[3] V. V. Kabanov, A. A. Makhnev, D. V. Paduchikh, “O grafakh bez koron s regulyarnymi $\mu$-podgrafami, II”, Matem. zametki, 74:3 (2003), 396–406 | MR | Zbl

[4] R. C. Bose, T. A. Dowling, “A generalization of Moore graphs of diameter two”, J. Combin. Theory Ser. B, 11:3 (1971), 213–226 | DOI | MR | Zbl

[5] N. N. Vorobev, Chisla Fibonachchi, Populyarnye lektsii po matematike, 6, Nauka, M., 1978 | MR | Zbl