Terwilliger Graphs with $\mu\le3$
Matematičeskie zametki, Tome 82 (2007) no. 1, pp. 14-26

Voir la notice de l'article provenant de la source Math-Net.Ru

A Terwilliger graph is a noncomplete graph in which intersection of the neighborhoods of any two vertices at distance 2 from each other is a $\mu$-clique. We classify connected Terwilliger graphs with $\mu=3$ and describe the structure of Terwilliger graphs of diameter 2 with $\mu=2$.
Keywords: undirected graph, regular graph, biregular graph, Terwilliger graph, edge regular graph, Fibonacci number, affine and projective plane.
Mots-clés : clique extension
@article{MZM_2007_82_1_a2,
     author = {A. L. Gavrilyuk and A. A. Makhnev},
     title = {Terwilliger {Graphs} with $\mu\le3$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {14--26},
     publisher = {mathdoc},
     volume = {82},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a2/}
}
TY  - JOUR
AU  - A. L. Gavrilyuk
AU  - A. A. Makhnev
TI  - Terwilliger Graphs with $\mu\le3$
JO  - Matematičeskie zametki
PY  - 2007
SP  - 14
EP  - 26
VL  - 82
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a2/
LA  - ru
ID  - MZM_2007_82_1_a2
ER  - 
%0 Journal Article
%A A. L. Gavrilyuk
%A A. A. Makhnev
%T Terwilliger Graphs with $\mu\le3$
%J Matematičeskie zametki
%D 2007
%P 14-26
%V 82
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a2/
%G ru
%F MZM_2007_82_1_a2
A. L. Gavrilyuk; A. A. Makhnev. Terwilliger Graphs with $\mu\le3$. Matematičeskie zametki, Tome 82 (2007) no. 1, pp. 14-26. http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a2/