Terwilliger Graphs with $\mu\le3$
Matematičeskie zametki, Tome 82 (2007) no. 1, pp. 14-26
Cet article a éte moissonné depuis la source Math-Net.Ru
A Terwilliger graph is a noncomplete graph in which intersection of the neighborhoods of any two vertices at distance 2 from each other is a $\mu$-clique. We classify connected Terwilliger graphs with $\mu=3$ and describe the structure of Terwilliger graphs of diameter 2 with $\mu=2$.
Keywords:
undirected graph, regular graph, biregular graph, Terwilliger graph, edge regular graph, Fibonacci number, affine and projective plane.
Mots-clés : clique extension
Mots-clés : clique extension
@article{MZM_2007_82_1_a2,
author = {A. L. Gavrilyuk and A. A. Makhnev},
title = {Terwilliger {Graphs} with $\mu\le3$},
journal = {Matemati\v{c}eskie zametki},
pages = {14--26},
year = {2007},
volume = {82},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a2/}
}
A. L. Gavrilyuk; A. A. Makhnev. Terwilliger Graphs with $\mu\le3$. Matematičeskie zametki, Tome 82 (2007) no. 1, pp. 14-26. http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a2/
[1] A. E. Brouwer, A. M. Cohen, A. Neumaier, Distance-Regular Graphs, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 18, Springer-Verlag, Berlin–Heidelberg–New York, 1989 | MR | Zbl
[2] A. A. Makhnev, “O regulyarnykh grafakh Tervilligera s $\mu=2$”, Sib. matem. zhurn., 37:5 (1996), 1132–1134 | MR | Zbl
[3] V. V. Kabanov, A. A. Makhnev, D. V. Paduchikh, “O grafakh bez koron s regulyarnymi $\mu$-podgrafami, II”, Matem. zametki, 74:3 (2003), 396–406 | MR | Zbl
[4] R. C. Bose, T. A. Dowling, “A generalization of Moore graphs of diameter two”, J. Combin. Theory Ser. B, 11:3 (1971), 213–226 | DOI | MR | Zbl
[5] N. N. Vorobev, Chisla Fibonachchi, Populyarnye lektsii po matematike, 6, Nauka, M., 1978 | MR | Zbl