Approximation Problems for Generalized Schur Functions in a Neighborhood of~1
Matematičeskie zametki, Tome 82 (2007) no. 1, pp. 150-155.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: generalized Schur function, Nevanlinna function, Pontryagin space, Hilbert space, Cayley–Neumann transform.
@article{MZM_2007_82_1_a15,
     author = {E. N. Andreishcheva},
     title = {Approximation {Problems} for {Generalized} {Schur} {Functions} in a {Neighborhood} of~1},
     journal = {Matemati\v{c}eskie zametki},
     pages = {150--155},
     publisher = {mathdoc},
     volume = {82},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a15/}
}
TY  - JOUR
AU  - E. N. Andreishcheva
TI  - Approximation Problems for Generalized Schur Functions in a Neighborhood of~1
JO  - Matematičeskie zametki
PY  - 2007
SP  - 150
EP  - 155
VL  - 82
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a15/
LA  - ru
ID  - MZM_2007_82_1_a15
ER  - 
%0 Journal Article
%A E. N. Andreishcheva
%T Approximation Problems for Generalized Schur Functions in a Neighborhood of~1
%J Matematičeskie zametki
%D 2007
%P 150-155
%V 82
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a15/
%G ru
%F MZM_2007_82_1_a15
E. N. Andreishcheva. Approximation Problems for Generalized Schur Functions in a Neighborhood of~1. Matematičeskie zametki, Tome 82 (2007) no. 1, pp. 150-155. http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a15/

[1] M. G. Krein, H. Langer, Math. Nachr., 77 (1977), 187–236 | DOI | MR | Zbl

[2] T. Ya. Azizov, I. S. Iokhvidov, Osnovy teorii lineinykh operatorov v prostranstve s indefinitnoi metrikoi, Nauka, M., 1986 | MR | Zbl

[3] N. I. Akhiezer, I. M. Glazman, Teoriya lineinykh operatorov v gilbertovom prostranstve, Nauka, M., 1966 | MR | Zbl