Approximation Problems for Generalized Schur Functions in a Neighborhood of 1
Matematičeskie zametki, Tome 82 (2007) no. 1, pp. 150-155
Cet article a éte moissonné depuis la source Math-Net.Ru
Keywords:
generalized Schur function, Nevanlinna function, Pontryagin space, Hilbert space, Cayley–Neumann transform.
@article{MZM_2007_82_1_a15,
author = {E. N. Andreishcheva},
title = {Approximation {Problems} for {Generalized} {Schur} {Functions} in a {Neighborhood} of~1},
journal = {Matemati\v{c}eskie zametki},
pages = {150--155},
year = {2007},
volume = {82},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a15/}
}
E. N. Andreishcheva. Approximation Problems for Generalized Schur Functions in a Neighborhood of 1. Matematičeskie zametki, Tome 82 (2007) no. 1, pp. 150-155. http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a15/
[1] M. G. Krein, H. Langer, Math. Nachr., 77 (1977), 187–236 | DOI | MR | Zbl
[2] T. Ya. Azizov, I. S. Iokhvidov, Osnovy teorii lineinykh operatorov v prostranstve s indefinitnoi metrikoi, Nauka, M., 1986 | MR | Zbl
[3] N. I. Akhiezer, I. M. Glazman, Teoriya lineinykh operatorov v gilbertovom prostranstve, Nauka, M., 1966 | MR | Zbl