Variational Inequalities in Magneto-Hydrodynamics
Matematičeskie zametki, Tome 82 (2007) no. 1, pp. 135-149.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study subdifferential initial boundary-value problems for the magneto-hydrodynamics (MHD) equations of a viscous incompressible liquid. We construct the solvability theory for an abstract evolution inequality in Hilbert space for operators with quadratic nonlinearity. The results obtained are applied to the study of MHD flows. For three-dimensional flows, we prove the existence of weak solutions of variational inequalities “globally” with respect to time, while, for two-dimensional flows, we establish the existence and uniqueness of strong solutions.
Mots-clés : viscous incompressible liquid
Keywords: magneto-hydrodynamics equation, subdifferential initial boundary-value problem, variational inequality.
@article{MZM_2007_82_1_a14,
     author = {A. Yu. Chebotarev and A. S. Savenkova},
     title = {Variational {Inequalities} in {Magneto-Hydrodynamics}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {135--149},
     publisher = {mathdoc},
     volume = {82},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a14/}
}
TY  - JOUR
AU  - A. Yu. Chebotarev
AU  - A. S. Savenkova
TI  - Variational Inequalities in Magneto-Hydrodynamics
JO  - Matematičeskie zametki
PY  - 2007
SP  - 135
EP  - 149
VL  - 82
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a14/
LA  - ru
ID  - MZM_2007_82_1_a14
ER  - 
%0 Journal Article
%A A. Yu. Chebotarev
%A A. S. Savenkova
%T Variational Inequalities in Magneto-Hydrodynamics
%J Matematičeskie zametki
%D 2007
%P 135-149
%V 82
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a14/
%G ru
%F MZM_2007_82_1_a14
A. Yu. Chebotarev; A. S. Savenkova. Variational Inequalities in Magneto-Hydrodynamics. Matematičeskie zametki, Tome 82 (2007) no. 1, pp. 135-149. http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a14/

[1] M. Sermange, R. Temam, “Some mathematical questions related to the MHD equations”, Comm. Pure Appl. Math., 36:5 (1983), 635–664 | DOI | MR | Zbl

[2] G. Dyuvo, Zh.-L. Lions, Neravenstva v mekhanike i fizike, Nauka, M., 1980 | MR | Zbl

[3] A. Yu. Chebotarev, “Variatsionnye neravenstva dlya operatora tipa Nave–Stoksa i odnostoronnie zadachi dlya uravnenii vyazkoi teploprovodnoi zhidkosti”, Matem. zametki, 70:2 (2001), 296–307 | MR | Zbl

[4] T. V. Bespalova, A. Yu. Chebotarev, “Variatsionnye neravenstva i obratnye subdifferentsialnye zadachi dlya uravnenii Maksvella v garmonicheskom rezhime”, Differents. uravneniya, 36:6 (2000), 747–753 | MR | Zbl

[5] D. S. Konovalova, “Subdifferentsialnye kraevye zadachi dlya evolyutsionnykh uravnenii Nave–Stoksa”, Differents. uravneniya, 36:6 (2000), 792–798 | MR | Zbl

[6] A. Yu. Chebotarev, “Subdifferential inverse problems for evolution Navier–Stokes systems”, J. Inverse Ill-Posed Probl, 8:3 (2000), 243–254 | MR | Zbl

[7] P. Panagiotopulos, Neravenstva v mekhanike i ikh prilozheniya, Vypuklye i nevypuklye funktsii energii, Mir, M., 1989 | MR | Zbl

[8] J. P. Aubin, Optima and Equilibria, Graduate Texts in Mathematics, 140, Springer-Verlag, Berlin, 1993 | MR | Zbl

[9] V. Barbu, Analysis and Control of Nonlinear Iinfinite Dimensional Systems, Mathematics in Science and Engineering, 190, Academic Press, Inc., Boston, MA, 1993 | MR | Zbl