Asplund Space: Another Criterion
Matematičeskie zametki, Tome 82 (2007) no. 1, pp. 118-124

Voir la notice de l'article provenant de la source Math-Net.Ru

The theorem proved in this paper establishes conditions under which a Banach space $X$ is an Asplund space (i.e., its dual space is a space with the $RN$ property). The theorem is formulated in terms of the existence of a supersequentially compact set in $(B(X^{**}),\omega^*)$, where $B(X^{**})$ stands for the unit ball of the second dual of $X$ and $\omega^*$ for the weak topology on the ball. The example presented in the paper shows that one cannot get rid of some restrictive conditions in the theorem in general.
Keywords: Asplund space, supersequentially compact set, Radon–Nikodým property, Bochner integral, Banach space.
@article{MZM_2007_82_1_a12,
     author = {V. I. Rybakov},
     title = {Asplund {Space:} {Another} {Criterion}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {118--124},
     publisher = {mathdoc},
     volume = {82},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a12/}
}
TY  - JOUR
AU  - V. I. Rybakov
TI  - Asplund Space: Another Criterion
JO  - Matematičeskie zametki
PY  - 2007
SP  - 118
EP  - 124
VL  - 82
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a12/
LA  - ru
ID  - MZM_2007_82_1_a12
ER  - 
%0 Journal Article
%A V. I. Rybakov
%T Asplund Space: Another Criterion
%J Matematičeskie zametki
%D 2007
%P 118-124
%V 82
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a12/
%G ru
%F MZM_2007_82_1_a12
V. I. Rybakov. Asplund Space: Another Criterion. Matematičeskie zametki, Tome 82 (2007) no. 1, pp. 118-124. http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a12/