Asplund Space: Another Criterion
Matematičeskie zametki, Tome 82 (2007) no. 1, pp. 118-124.

Voir la notice de l'article provenant de la source Math-Net.Ru

The theorem proved in this paper establishes conditions under which a Banach space $X$ is an Asplund space (i.e., its dual space is a space with the $RN$ property). The theorem is formulated in terms of the existence of a supersequentially compact set in $(B(X^{**}),\omega^*)$, where $B(X^{**})$ stands for the unit ball of the second dual of $X$ and $\omega^*$ for the weak topology on the ball. The example presented in the paper shows that one cannot get rid of some restrictive conditions in the theorem in general.
Keywords: Asplund space, supersequentially compact set, Radon–Nikodým property, Bochner integral, Banach space.
@article{MZM_2007_82_1_a12,
     author = {V. I. Rybakov},
     title = {Asplund {Space:} {Another} {Criterion}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {118--124},
     publisher = {mathdoc},
     volume = {82},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a12/}
}
TY  - JOUR
AU  - V. I. Rybakov
TI  - Asplund Space: Another Criterion
JO  - Matematičeskie zametki
PY  - 2007
SP  - 118
EP  - 124
VL  - 82
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a12/
LA  - ru
ID  - MZM_2007_82_1_a12
ER  - 
%0 Journal Article
%A V. I. Rybakov
%T Asplund Space: Another Criterion
%J Matematičeskie zametki
%D 2007
%P 118-124
%V 82
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a12/
%G ru
%F MZM_2007_82_1_a12
V. I. Rybakov. Asplund Space: Another Criterion. Matematičeskie zametki, Tome 82 (2007) no. 1, pp. 118-124. http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a12/

[1] J. Diestel, J. J. Uhl, Vector Measure, Math Surveys, 15, American Mathematical Society, Providence, RI, 1977 | MR | Zbl

[2] R. D. Bourgin, Geometric Aspects of Convex Sets with Radon-Nikodým property, Lecture Notes in Math, 993, Springer-Verlag, Berlin, 1983 | MR | Zbl

[3] R. Deville, G. Godefroy, V. Zizler, Smoothness and Renormings in Banach Spaces, Pitman Monographs and Surveys in Pure and Applied Mathematics, 64, John Wiley Sons, Inc., New York, 1993 | MR | Zbl

[4] I. Namioka, “Radom-Nikodým compact spaces and Fragmentability”, Mathematika, 34:2 (1987), 258–281 | MR | Zbl

[5] J. Diestel, Sequences and Series in Banach Spaces, Graduate Texts in Mathematics, 92, Springer-Verlag, New York, 1984 | MR | Zbl

[6] L. V. Kantorovich, G. P. Akilov, Funktsionalnyi analiz, Nauka, M., 1984 | MR | Zbl

[7] K. Musial, “Topics in the theory of Pettis integration”, Rend. Istit. Mat. Univ. Trieste, 23:1 (1991), 177–262 | MR | Zbl

[8] B. Cascales, I. Namioka, J. Orihuela, “The Lindelöf property in Banach spaces”, Studia Math., 154:2 (2003), 165–192 | DOI | MR | Zbl

[9] H. E. Lacey, The Isometric Theory of Classical Banach Spaces, Die Grundlehren der mathematischen Wissenschaften, 208, Springer-Verlag, New York, 1974 | MR | Zbl

[10] A. V. Arkhangelskii, Topologicheskie prostranstva funktsii, Izd-vo MGU, M., 1989 | MR | Zbl

[11] J. Orihuela, “On weakly Lindelöf Banach Spaces”, Progress in Functional Analysis (Peníscola, 1990), Norht-Holland Math. Stud., 170, North-Holland, Amsterdam, 1992, 279–291 | MR | Zbl

[12] R. Deville, G. Godefroy, “Some applications of projectional resolution of identity”, Proc. London Math. Soc. (3), 67:1 (1993), 183–199 | DOI | MR | Zbl

[13] G. A. Edgar, “A long James space”, Measure theory (Oberwolfach, 1979), Lecture Notes in Math, 794, Springer-Verlag, New York, 1980, 31–37 | MR | Zbl

[14] O. Kalenda, “Valdivia compacta and bidual of Asplund spaces”, General topology and Banach spaces, Nova Sci. Publ., Huntington, NY, 2001, 115–125 | MR | Zbl