Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2007_82_1_a12, author = {V. I. Rybakov}, title = {Asplund {Space:} {Another} {Criterion}}, journal = {Matemati\v{c}eskie zametki}, pages = {118--124}, publisher = {mathdoc}, volume = {82}, number = {1}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a12/} }
V. I. Rybakov. Asplund Space: Another Criterion. Matematičeskie zametki, Tome 82 (2007) no. 1, pp. 118-124. http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a12/
[1] J. Diestel, J. J. Uhl, Vector Measure, Math Surveys, 15, American Mathematical Society, Providence, RI, 1977 | MR | Zbl
[2] R. D. Bourgin, Geometric Aspects of Convex Sets with Radon-Nikodým property, Lecture Notes in Math, 993, Springer-Verlag, Berlin, 1983 | MR | Zbl
[3] R. Deville, G. Godefroy, V. Zizler, Smoothness and Renormings in Banach Spaces, Pitman Monographs and Surveys in Pure and Applied Mathematics, 64, John Wiley Sons, Inc., New York, 1993 | MR | Zbl
[4] I. Namioka, “Radom-Nikodým compact spaces and Fragmentability”, Mathematika, 34:2 (1987), 258–281 | MR | Zbl
[5] J. Diestel, Sequences and Series in Banach Spaces, Graduate Texts in Mathematics, 92, Springer-Verlag, New York, 1984 | MR | Zbl
[6] L. V. Kantorovich, G. P. Akilov, Funktsionalnyi analiz, Nauka, M., 1984 | MR | Zbl
[7] K. Musial, “Topics in the theory of Pettis integration”, Rend. Istit. Mat. Univ. Trieste, 23:1 (1991), 177–262 | MR | Zbl
[8] B. Cascales, I. Namioka, J. Orihuela, “The Lindelöf property in Banach spaces”, Studia Math., 154:2 (2003), 165–192 | DOI | MR | Zbl
[9] H. E. Lacey, The Isometric Theory of Classical Banach Spaces, Die Grundlehren der mathematischen Wissenschaften, 208, Springer-Verlag, New York, 1974 | MR | Zbl
[10] A. V. Arkhangelskii, Topologicheskie prostranstva funktsii, Izd-vo MGU, M., 1989 | MR | Zbl
[11] J. Orihuela, “On weakly Lindelöf Banach Spaces”, Progress in Functional Analysis (Peníscola, 1990), Norht-Holland Math. Stud., 170, North-Holland, Amsterdam, 1992, 279–291 | MR | Zbl
[12] R. Deville, G. Godefroy, “Some applications of projectional resolution of identity”, Proc. London Math. Soc. (3), 67:1 (1993), 183–199 | DOI | MR | Zbl
[13] G. A. Edgar, “A long James space”, Measure theory (Oberwolfach, 1979), Lecture Notes in Math, 794, Springer-Verlag, New York, 1980, 31–37 | MR | Zbl
[14] O. Kalenda, “Valdivia compacta and bidual of Asplund spaces”, General topology and Banach spaces, Nova Sci. Publ., Huntington, NY, 2001, 115–125 | MR | Zbl