Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2007_82_1_a10, author = {M. A. Prokhorovich}, title = {Hausdorff {Dimension} of {Lebesgue} {Sets} for $W^p_\alpha$ {Classes} on {Metric} {Spaces}}, journal = {Matemati\v{c}eskie zametki}, pages = {99--107}, publisher = {mathdoc}, volume = {82}, number = {1}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a10/} }
M. A. Prokhorovich. Hausdorff Dimension of Lebesgue Sets for $W^p_\alpha$ Classes on Metric Spaces. Matematičeskie zametki, Tome 82 (2007) no. 1, pp. 99-107. http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a10/
[1] R. R. Coifman, G. Weiss, “Analyse harmonique non-commutative sur certain espaces homogenés”, Lecture Notes in Math., v. 242, Springer-Verlag, Berlin–Heidelberg–New York, 1971 | MR | Zbl
[2] R. R. Coifman, G. Weiss, “Extensions of Hardy spaces and their use in analysis”, Bull. Amer. Math. Soc., 83:4 (1977), 569–645 | DOI | MR | Zbl
[3] P. Hajłasz, “Sobolev spaces on an arbitrary metric spaces”, Potential Anal., 5:4 (1996), 403–415 | MR | Zbl
[4] P. Hajłasz, P. Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc., 145{, 688}, American Mathematical Society, Providence, RI, 2000 | MR | Zbl
[5] J. Heinonen, Lectures on Analysis on Metric Spaces, Universitext, Springer-Verlag, New York, 2001 | MR | Zbl
[6] J. Hu, “A note on Hajłasz–Sobolev spaces on fractals”, J. Math. Anal. Appl., 280:1 (2003), 91–101 | DOI | MR | Zbl
[7] D. Yang, “New haracterization of Hajłasz–Sobolev spaces on metric spaces”, Sci. China Ser. A, 46:5 (2003), 675–689 | DOI | MR | Zbl
[8] I. A. Ivanishko, “Obobschennye klassy Soboleva na metricheskikh prostranstvakh s meroi”, Matem. zametki, 77:6 (2005), 937–941 | MR | Zbl
[9] J. Kinnunen, O. Martio, “The Sobolev capacity on metric spaces”, Ann. Acad. Sci. Fenn. Math., 21:2 (1996), 367–382 | MR | Zbl
[10] J. Kinnunen, V. Latvala, “Lebesgue points for Sobolev functions on metric spaces”, Rev. Mat. Iberoamericana, 18:3 (2002), 685–700 | MR | Zbl
[11] P. Hajłasz, J. Kinnunen, “Hölder qasicontinuity of Sobolev functions on metric spaces”, Rev. Mat. Iberoamericana, 14:3 (1998), 601–622 | MR | Zbl
[12] M. A. Prokhorovich, “Emkosti i tochki Lebega dlya drobnykh klassov Khailasha–Soboleva na metricheskikh prostranstvakh s meroi”, Vestsi NAN Belarusi. Ser. fiz.-mat. navuk, 2006, no. 1, 19–23 | MR
[13] M. A. Prokhorovich, “Emkosti i razmernost Khausdorfa mnozhestva tochek Lebega dlya funktsii iz klassov Soboleva na prostranstvakh odnorodnogo tipa”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Tezisy dokladov 13-i Saratovskoi zimnei shkoly, Saratov, 2006, 146–147
[14] H. Federer, Geometric Measure Theory, Die Grundlehren der mathematischen Wissenschaften, 153, Springer-Verlag, Berlin–Heidelberg–New York, 1969 | MR | Zbl
[15] D. R. Adams, L. I. Hedberg, “Function spaces and potential theory”, Grundlehren der Mathematischen Wissenschaften, 314, Springer-Verlag, Berlin–Heidelberg–New York, 1996 | MR | Zbl
[16] I. A. Ivanishko, V. G. Krotov, “Obobschennoe neravenstvo Puankare–Soboleva na metricheskikh prostranstvakh s meroi”, Tr. In-ta matem. NAN Belarusi, 14:1 (2006)
[17] E. M. Stein, Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals, Princeton Mathematical Series, 43, Princeton Univ. Press, Princeton, NJ, 1993 | MR | Zbl
[18] T. Bagby, W. P. Ziemer, “Pointwise differentiablity and absolute continuity”, Trans. Amer. Math. Soc., 191 (1974), 129–148 | DOI | MR | Zbl