Hausdorff Dimension of Lebesgue Sets for $W^p_\alpha$ Classes on Metric Spaces
Matematičeskie zametki, Tome 82 (2007) no. 1, pp. 99-107

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $(X,\mu,d)$ be a space of homogeneous type, where $d$ and $\mu$ are a metric and a measure, respectively, related to each other by the doubling condition with $\gamma>0$. Let $W^p_\alpha(X)$ be generalized Sobolev classes, let $\operatorname{Cap}_{\alpha,p}$ (where $p>1$ and $0\alpha\le 1$) be the corresponding capacity, and let $\dim_H$ be the Hausdorff dimension. We show that the capacity $\operatorname{Cap}_{\alpha,p}$ is related to the Hausdorff dimension and also prove that, for each function $u\in W^p_\alpha(X)$, $p>1$, $0\alpha\gamma/p$, there exists a set $E\subset X$ such that $\dim_H(E)\le\gamma-\alpha p$, the limit $$ \lim_{r\to +0}\frac{1}{\mu(B(x,r))}\int_{B(x,r)}u\,d\mu=u^*(x) $$ exists for each $x\in X\setminus E$, and moreover $$ \lim_{r\to+0}\frac{1}{\mu(B(x,r))}\int_{B(x,r)}|u-u^*(x)|^q\,d\mu=0,\qquad \frac{1}{q}=\frac{1}{p}-\frac{\alpha}{\gamma}. $$
Keywords: Sobolev class, capacity, metric space, Borel measure.
Mots-clés : Lebesgue set, Hausdorff dimension
@article{MZM_2007_82_1_a10,
     author = {M. A. Prokhorovich},
     title = {Hausdorff {Dimension} of {Lebesgue} {Sets} for $W^p_\alpha$ {Classes} on {Metric} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {99--107},
     publisher = {mathdoc},
     volume = {82},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a10/}
}
TY  - JOUR
AU  - M. A. Prokhorovich
TI  - Hausdorff Dimension of Lebesgue Sets for $W^p_\alpha$ Classes on Metric Spaces
JO  - Matematičeskie zametki
PY  - 2007
SP  - 99
EP  - 107
VL  - 82
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a10/
LA  - ru
ID  - MZM_2007_82_1_a10
ER  - 
%0 Journal Article
%A M. A. Prokhorovich
%T Hausdorff Dimension of Lebesgue Sets for $W^p_\alpha$ Classes on Metric Spaces
%J Matematičeskie zametki
%D 2007
%P 99-107
%V 82
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a10/
%G ru
%F MZM_2007_82_1_a10
M. A. Prokhorovich. Hausdorff Dimension of Lebesgue Sets for $W^p_\alpha$ Classes on Metric Spaces. Matematičeskie zametki, Tome 82 (2007) no. 1, pp. 99-107. http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a10/