Hausdorff Dimension of Lebesgue Sets for $W^p_\alpha$ Classes on Metric Spaces
Matematičeskie zametki, Tome 82 (2007) no. 1, pp. 99-107
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $(X,\mu,d)$ be a space of homogeneous type, where $d$ and $\mu$ are a metric and a measure, respectively, related to each other by the doubling condition with $\gamma>0$. Let $W^p_\alpha(X)$ be generalized Sobolev classes, let $\operatorname{Cap}_{\alpha,p}$ (where $p>1$ and $0\alpha\le 1$) be the corresponding capacity, and let $\dim_H$ be the Hausdorff dimension. We show that the capacity $\operatorname{Cap}_{\alpha,p}$ is related to the Hausdorff dimension and also prove that, for each function $u\in W^p_\alpha(X)$, $p>1$, $0\alpha\gamma/p$, there exists a set $E\subset X$ such that $\dim_H(E)\le\gamma-\alpha p$, the limit
$$
\lim_{r\to +0}\frac{1}{\mu(B(x,r))}\int_{B(x,r)}u\,d\mu=u^*(x)
$$
exists for each $x\in X\setminus E$, and moreover
$$
\lim_{r\to+0}\frac{1}{\mu(B(x,r))}\int_{B(x,r)}|u-u^*(x)|^q\,d\mu=0,\qquad \frac{1}{q}=\frac{1}{p}-\frac{\alpha}{\gamma}.
$$
Keywords:
Sobolev class, capacity, metric space, Borel measure.
Mots-clés : Lebesgue set, Hausdorff dimension
Mots-clés : Lebesgue set, Hausdorff dimension
@article{MZM_2007_82_1_a10,
author = {M. A. Prokhorovich},
title = {Hausdorff {Dimension} of {Lebesgue} {Sets} for $W^p_\alpha$ {Classes} on {Metric} {Spaces}},
journal = {Matemati\v{c}eskie zametki},
pages = {99--107},
publisher = {mathdoc},
volume = {82},
number = {1},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a10/}
}
M. A. Prokhorovich. Hausdorff Dimension of Lebesgue Sets for $W^p_\alpha$ Classes on Metric Spaces. Matematičeskie zametki, Tome 82 (2007) no. 1, pp. 99-107. http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a10/