On the Zudilin--Rivoal Theorem
Matematičeskie zametki, Tome 81 (2007) no. 6, pp. 912-923.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a new method for proving the Zudilin–Rivoal theorem stating, in particular, that the sequence of values of the Dirichlet beta function at even natural points contains infinitely many irrational values. For polylogarithms, we use Hermite–Padé approximations of the first type, invariant with respect to the Klein group. Quantitative additions to this theorem are obtained.
Keywords: Dirichlet beta function, Riemann zeta function, Hermite–Padé approximation, Zudilin–Rivoal theorem, Mellin transform.
Mots-clés : polylogarithm, Klein group
@article{MZM_2007_81_6_a9,
     author = {V. N. Sorokin},
     title = {On the {Zudilin--Rivoal} {Theorem}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {912--923},
     publisher = {mathdoc},
     volume = {81},
     number = {6},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_6_a9/}
}
TY  - JOUR
AU  - V. N. Sorokin
TI  - On the Zudilin--Rivoal Theorem
JO  - Matematičeskie zametki
PY  - 2007
SP  - 912
EP  - 923
VL  - 81
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_81_6_a9/
LA  - ru
ID  - MZM_2007_81_6_a9
ER  - 
%0 Journal Article
%A V. N. Sorokin
%T On the Zudilin--Rivoal Theorem
%J Matematičeskie zametki
%D 2007
%P 912-923
%V 81
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_81_6_a9/
%G ru
%F MZM_2007_81_6_a9
V. N. Sorokin. On the Zudilin--Rivoal Theorem. Matematičeskie zametki, Tome 81 (2007) no. 6, pp. 912-923. http://geodesic.mathdoc.fr/item/MZM_2007_81_6_a9/

[1] R. Apéry, “Irrationalité de $\zeta(2)$ et $\zeta(3)$”, Journées Arithmetiques de Luminy, Colloque International du Centre National de la Recherche Scientifique (CNRS) (Centre Universitaire de Luminy, Luminy, June 20–24, 1978), Astérisque, 61, 1979, 11–13 | MR | Zbl

[2] K. M. Ball, T. Rivoal, “Irrationalité d'une infinité de valeurs de la fonction zeta aux entiers impairs”, Invent. Math., 146:1 (2001), 193–207 | DOI | MR | Zbl

[3] V. V. Zudilin, “Odno iz chisel $\zeta(5)$, $\zeta(7)$, $\zeta(9)$, $\zeta(11)$ irratsionalno”, UMN, 56:4 (2001), 149–150 | MR | Zbl

[4] S. Fischler, “Irrationalité de valeurs de zeta (d'apres Apéry, Rivoal, ...)”, Bourbaki Seminar, Exp. 910, Astérisque, 294, 27–62 | MR | Zbl

[5] V. V. Zudilin, “Ob irratsionalnosti znachenii dzeta-funktsii Rimana”, Izv. RAN. Ser. matem., 66:3 (2002), 49–102 | MR | Zbl

[6] G. V. Chudnovsky, “Padé approximations to the generalized hypergeometric functions. I”, J. Math. Pures Appl. (9), 58:4 (1979), 445–476 | MR | Zbl

[7] E. M. Nikishin, “Ob irratsionalnosti znachenii funktsii $F(x,s)$”, Matem. sb., 109 (151):3 (1979), 410–417 | MR | Zbl

[8] V. N. Sorokin, “Approksimatsii Ermita–Pade polilogarifmov”, Izv. vuzov. Ser. matem., 1994, no. 5, 49–59 | MR | Zbl

[9] T. Rivoal, W. Zudilin, “Diophantic properties of numbers related to Catalan's constant”, Math. Ann., 326:4 (2003), 705–721 | DOI | MR | Zbl

[10] A. A. Gonchar, E. A. Rakhmanov, V. N. Sorokin, “Ob approksimatsiyakh Ermita–Pade dlya sistem funktsii markovskogo tipa”, Matem. sb., 188:5 (1997), 33–58 | MR | Zbl

[11] V. N. Sorokin, “Approksimatsii Ermita–Pade posledovatelnykh stepenei logarifma i ikh arifmeticheskie prilozheniya”, Izv. vuzov. Ser. matem., 1991, no. 11, 66–74 | MR | Zbl

[12] K. Mahler, “Zur Approximation der Exponentialfunktion und des Logarithmus. I”, J. Reine Angew. Math., 166 (1932), 118–136 | Zbl

[13] V. N. Sorokin, “O sovmestnykh dvukhtochechnykh approksimatsiyakh Pade markovskikh funktsii”, Ukr. matem. zhurn., 43:6 (1991), 837–841 | MR | Zbl

[14] N. I. Feldman, Sedmaya problema Gilberta, Izd-vo MGU, M., 1982 | MR | Zbl

[15] Yu. V. Nesterenko, “O lineinoi nezavisimosti chisel”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1984, no. 1, 46–49 | MR | Zbl