Integration in Variational Inequalities on Spatial Grids
Matematičeskie zametki, Tome 81 (2007) no. 6, pp. 904-911.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove an analog of the classical Jacobi theorem concerning the positive definiteness of the second variation for a functional defined on functions of branching argument belonging to a spatial grid (a geometric graph). The singularities of the corresponding analog of the Jacobi equation (and of the Euler equation) are generated by the procedure of integration by parts, which leads to differentiation with respect to measures glued (joined) together.
Keywords: variational problem, integration, geometric graphs, Jacobi theorem on the second variation, Stieltjes integral, Banach space, Euler–Lagrange theorem.
Mots-clés : spatial grid
@article{MZM_2007_81_6_a8,
     author = {Yu. V. Pokornyi and I. Yu. Pokornaya and V. L. Pryadiev and N. N. Ryabtseva},
     title = {Integration in {Variational} {Inequalities} on {Spatial} {Grids}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {904--911},
     publisher = {mathdoc},
     volume = {81},
     number = {6},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_6_a8/}
}
TY  - JOUR
AU  - Yu. V. Pokornyi
AU  - I. Yu. Pokornaya
AU  - V. L. Pryadiev
AU  - N. N. Ryabtseva
TI  - Integration in Variational Inequalities on Spatial Grids
JO  - Matematičeskie zametki
PY  - 2007
SP  - 904
EP  - 911
VL  - 81
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_81_6_a8/
LA  - ru
ID  - MZM_2007_81_6_a8
ER  - 
%0 Journal Article
%A Yu. V. Pokornyi
%A I. Yu. Pokornaya
%A V. L. Pryadiev
%A N. N. Ryabtseva
%T Integration in Variational Inequalities on Spatial Grids
%J Matematičeskie zametki
%D 2007
%P 904-911
%V 81
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_81_6_a8/
%G ru
%F MZM_2007_81_6_a8
Yu. V. Pokornyi; I. Yu. Pokornaya; V. L. Pryadiev; N. N. Ryabtseva. Integration in Variational Inequalities on Spatial Grids. Matematičeskie zametki, Tome 81 (2007) no. 6, pp. 904-911. http://geodesic.mathdoc.fr/item/MZM_2007_81_6_a8/

[1] N. Danford, Dzh. T. Shvarts, Lineinye operatory, t. 1: Obschaya teoriya, IL, M., 1962 | MR | Zbl

[2] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976 | MR | Zbl

[3] V. A. Sadovnichii, Teoriya operatorov, Vysshaya shkola, M., 1999 | MR | Zbl

[4] L. Yang, Lektsii po variatsionnomu ischisleniyu i teorii optimalnogo upravleniya, Mir, M., 1974 | MR | Zbl

[5] Yu. V. Pokornyi, O. M. Penkin, V. L. Pryadiev, A. V. Borovskikh, K. P. Lazarev, S. A. Shabrov, Differentsialnye uravneniya na geometricheskikh grafakh, Fizmatlit, M., 2004 | MR | Zbl

[6] Yu. V. Pokornyi, “Integral Stiltesa i proizvodnye po mere v obyknovennykh differentsialnykh uravneniyakh”, Dokl. RAN, 364:2 (1999), 167–169 | MR | Zbl

[7] Yu. V. Pokornyi, M. B. Zvereva, S. A. Shabrov, “Ob odnom klasse obobschennykh zadach Shturma–Liuvillya s razryvnymi resheniyami”, Differentsialnye uravneniya i smezhnye voprosy, Tezisy dokladov Mezhdunarodnoi konferentsii, posvyaschennoi 103-letiyu so dnya rozhdeniya I. G. Petrovskogo (XXI sovmestnoe zasedanie MMO i seminara im. I. G. Petrovskogo), Izd-vo MGU, M., 2004, 166–167

[8] M. Lavrentev, L. Lyusternik, Osnovy variatsionnogo ischisleniya, t. 1, ch. II, ONTI, M.–L., 1935