On the Brauer Group of a Two-Dimensional Local Field
Matematičeskie zametki, Tome 81 (2007) no. 6, pp. 838-841
Cet article a éte moissonné depuis la source Math-Net.Ru
The two-dimensional local field $K=F_q((u))((t))$, $\operatorname{char}K=p$, and its Brauer group $\operatorname{Br}(K)$ are considered. It is proved that, if $L=K(x)$ is the field extension for which we have $x^p-x=ut^{-p}=:h$, then the condition that $(y,f\,|\,h]_K=0$ for any $y\in K$ is equivalent to the condition $f\in\operatorname{Im}(\operatorname{Nm}(L^*))$.
Keywords:
two-dimensional local field, Brauer group, field extension, local field.
@article{MZM_2007_81_6_a2,
author = {M. A. Dubovitskaya},
title = {On the {Brauer} {Group} of a {Two-Dimensional} {Local} {Field}},
journal = {Matemati\v{c}eskie zametki},
pages = {838--841},
year = {2007},
volume = {81},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_6_a2/}
}
M. A. Dubovitskaya. On the Brauer Group of a Two-Dimensional Local Field. Matematičeskie zametki, Tome 81 (2007) no. 6, pp. 838-841. http://geodesic.mathdoc.fr/item/MZM_2007_81_6_a2/
[1] A. N. Parshin, “Kogomologii Galua i gruppa Brauera lokalnykh polei”, Teoriya Galua, koltsa, algebraicheskie gruppy i ikh prilozheniya, Tr. MIAN, 183, 1990, 159–169 | MR | Zbl
[2] A. N. Parshin, “Lokalnaya teoriya polei klassov”, Algebraicheskaya geometriya i ee prilozheniya, Tr. MIAN, 165, 1984, 143–170 | MR | Zbl
[3] J.-P. Serre, Corps Locaux, Deuxième édition. Publications de l'Université de Nancago, VIII, Hermann, Paris, 1968 | MR | Zbl