On the Hamiltonian of a Class of Quantum Stochastic Processes
Matematičeskie zametki, Tome 81 (2007) no. 6, pp. 816-837
Voir la notice de l'article provenant de la source Math-Net.Ru
Following the approach proposed by A. M. Chebotarev, we study the generator of a strongly continuous unitary group associated with solutions of the Hudson-Parthasarathy quantum stochastic differential equation (QSDE) in the case when the operators of the system of arbitrary multiplicity (or operator-valued coefficients characterizing the quantum system) are unbounded and noncommuting. We apply our results to the two-photon absorption and emission process.
Keywords:
Fock space, quantum stochastic differential equation, symmetric boundary value problem, creation, and number processes.
Mots-clés : annihilation
Mots-clés : annihilation
@article{MZM_2007_81_6_a1,
author = {R. Quezada Batalla and O. Gonz\'alez-Gaxiola},
title = {On the {Hamiltonian} of a {Class} of {Quantum} {Stochastic} {Processes}},
journal = {Matemati\v{c}eskie zametki},
pages = {816--837},
publisher = {mathdoc},
volume = {81},
number = {6},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_6_a1/}
}
R. Quezada Batalla; O. González-Gaxiola. On the Hamiltonian of a Class of Quantum Stochastic Processes. Matematičeskie zametki, Tome 81 (2007) no. 6, pp. 816-837. http://geodesic.mathdoc.fr/item/MZM_2007_81_6_a1/