Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2007_81_6_a1, author = {R. Quezada Batalla and O. Gonz\'alez-Gaxiola}, title = {On the {Hamiltonian} of a {Class} of {Quantum} {Stochastic} {Processes}}, journal = {Matemati\v{c}eskie zametki}, pages = {816--837}, publisher = {mathdoc}, volume = {81}, number = {6}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_6_a1/} }
R. Quezada Batalla; O. González-Gaxiola. On the Hamiltonian of a Class of Quantum Stochastic Processes. Matematičeskie zametki, Tome 81 (2007) no. 6, pp. 816-837. http://geodesic.mathdoc.fr/item/MZM_2007_81_6_a1/
[1] K. R. Parthasaraty, An Introduction to Quantum Stochastic Calculus, Monographs in Mathematics, 85, Birkhäuser Verlag, Basel, 1992 | MR | Zbl
[2] A. Frigerio, “Covariant Markov dilations of quantum dynamical semigroups”, Publ. Res. Inst. Math. Sci., 21:3 (1985), 657–675 | DOI | MR | Zbl
[3] A. Frigerio, “Construction of stationary quantum Markov processes through quantum stochastic calculus”, Quantum Probability and Applications, II (Heidelberg, 1984), Lecture Notes in Math., 1136, Springer-Verlag, Berlin, 1985, 207–222 | MR | Zbl
[4] H. Maassen, “Quantum Markov processes on Fock space described by integral kernels”, Quantum Probability and Applications, II (Heidelberg, 1984), Lecture Notes in Math., 1136, Springer-Verlag, Berlin, 1985, 361–374 | MR | Zbl
[5] J.-L. Journe, “Structure des cocycles markoviens sur l'espace de Fock”, Probab. Theory Related Fields, 75:2 (1987), 291–316 | DOI | MR | Zbl
[6] L. Accardi, J.-L. Journe, J. M. Lindsay, “On multi-dimensional Markovian cocycles”, Quantum Probability and Applications, IV (Rome, 1987), Lecture Notes in Math., 1396, Springer-Verlag, Berlin, 1989, 59–67 | MR | Zbl
[7] D. Applebaum, “Unitary evolutions and horizontal lifts in quantum stochastic calculus”, Comm. Math. Phys., 140:1 (1991), 63–80 | DOI | MR | Zbl
[8] F. Fagnola, “On quantum stochastic differential equations with unbounded coefficients”, Probab. Theory Related Fields, 86:4 (1990), 501–516 | DOI | MR | Zbl
[9] F. Fagnola, “Characterization of isometric and unitary weakly differentiable cocycles in Fock space”, Quantum Probability and Related Topics, QP-PQ, VIII, World Sci. Publ., River Edge, NJ, 1993, 143–164 | MR
[10] F. Fagnola, S. J. Wills, “Solving quantum stochastic differential equations with unbounded coefficients”, J. Funct. Anal., 198:2 (2003), 279–310 | DOI | MR | Zbl
[11] A. Mohari, K. R. Parthasarathy, “A quantum probabilistic analogue of Feller's condition for the existence of unitary Markovian cocycles in Fock spaces”, Statistics and Probability: A Raghu Raj Bahadur Festschrift, Wiley Eastern, New Delhi, 1993, 475–497
[12] B. R. Bhat, K. B. Sinha, “A stochastic differential equation with time-dependent and unbounded operator coefficients”, J. Funct. Anal., 114:1 (1993), 12–31 | DOI | MR | Zbl
[13] F. Fagnola, K. B. Sinha, “Scattering theory for unitary cocycles”, Stochastic Processes, Springer-Verlag, New York, 1993, 81–88 | MR | Zbl
[14] G. V. Ryzhakov, “Rezolventnye predely kvantovoi evolyutsii otkrytykh sistem”, Matem. zametki, 80:3 (2006), 476–480 | MR | Zbl
[15] W. von Waldenfels, “Symmetric differentiation and Hamiltonian of a quantum stochastic process”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 8:1 (2005), 73–116 | DOI | MR | Zbl
[16] A. M. Chebotarev, Lectures on Quantum Probability, Aportaciones Matemáticas: Textos, 14, Sociedad Matemática Mexicana, México, 2000 | MR | Zbl
[17] A. M. Chebotarev, “Chto takoe kvantovoe stokhasticheskoe uravnenie s tochki zreniya funktsionalnogo analiza?”, Matem. zametki, 71:3 (2002), 448–469 | MR | Zbl
[18] M. Gregoratti, “On the Hamiltonian operator associated to some quantum stochastic differential equations”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 3:4 (2000), 483–503 | DOI | MR | Zbl
[19] M. Gregoratti, “The Hamiltonian operator associated with some quantum stochastic evolutions”, Comm. Math. Phys., 222:1 (2001), 181–200 | DOI | MR | Zbl
[20] L. Accardi, “Noise and dissipation in quantum theory”, Rev. Math. Phys., 2:2 (1990), 127–176 | DOI | MR | Zbl
[21] E. DiBenedetto, Partial Differential Equations, Birkhäuser, Basel, 1995 | MR | Zbl
[22] F. Fagnola, R. Quezada, “Two photon absorption and emision process”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 8:4 (2005), 573–591 | DOI | MR | Zbl
[23] M. Gregoratti, “Traces of Sobolev functions with one square integrable directional derivative”, Math. Methods Appl. Sci., 29:2 (2006), 157–171 | DOI | MR | Zbl