Optimal Reconstruction of the Solution of the Wave Equation from Inaccurate Initial Data
Matematičeskie zametki, Tome 81 (2007) no. 6, pp. 803-815.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we consider the problem of the optimal reconstruction of the solution of the wave equation from the approximate values of the Fourier coefficients of the function specifying the initial form of the string. For an operator defined on the weight space of vectors from $l_2$, we present the solution of the more general problem of reconstruction from the approximate values of the coordinates of these vectors.
Keywords: wave equation, information operator, Lagrange function, the space $l_2$.
Mots-clés : reconstruction problem, Fourier coefficient, Lagrange multipliers
@article{MZM_2007_81_6_a0,
     author = {N. D. Vysk and K. Yu. Osipenko},
     title = {Optimal {Reconstruction} of the {Solution} of the {Wave} {Equation} from {Inaccurate} {Initial} {Data}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {803--815},
     publisher = {mathdoc},
     volume = {81},
     number = {6},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_6_a0/}
}
TY  - JOUR
AU  - N. D. Vysk
AU  - K. Yu. Osipenko
TI  - Optimal Reconstruction of the Solution of the Wave Equation from Inaccurate Initial Data
JO  - Matematičeskie zametki
PY  - 2007
SP  - 803
EP  - 815
VL  - 81
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_81_6_a0/
LA  - ru
ID  - MZM_2007_81_6_a0
ER  - 
%0 Journal Article
%A N. D. Vysk
%A K. Yu. Osipenko
%T Optimal Reconstruction of the Solution of the Wave Equation from Inaccurate Initial Data
%J Matematičeskie zametki
%D 2007
%P 803-815
%V 81
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_81_6_a0/
%G ru
%F MZM_2007_81_6_a0
N. D. Vysk; K. Yu. Osipenko. Optimal Reconstruction of the Solution of the Wave Equation from Inaccurate Initial Data. Matematičeskie zametki, Tome 81 (2007) no. 6, pp. 803-815. http://geodesic.mathdoc.fr/item/MZM_2007_81_6_a0/

[1] G. G. Magaril-Ilyaev, K. Yu. Osipenko, “Optimalnoe vosstanovlenie funktsii i ikh proizvodnykh po koeffitsientam Fure, zadannym s pogreshnostyu”, Matem. sb., 193:3 (2002), 79–100 | MR | Zbl

[2] G. G. Magaril-Ilyaev, K. Yu. Osipenko, “Optimalnoe vosstanovlenie funktsii i ikh proizvodnykh po priblizhennoi informatsii o spektre i neravenstva dlya proizvodnykh”, Funkts. analiz i ego prilozh., 37 (2003), 51–64 | MR | Zbl

[3] K. Yu. Osipenko, “Neravenstvo Khardi–Littlvuda–Polia dlya analiticheskikh funktsii iz prostranstv Khardi–Soboleva”, Matem. sb., 197:3 (2006), 15–34 | MR

[4] G. G. Magaril-Ilýaev, K. Yu. Osipenko, V. M. Tikhomirov, “On optimal recovery of heat equation solutions.”, Approximation Theory: A volume dedicated to B. Bojanov, Approximation theory, eds. D. K. Dimitrov, G. Nikolov, R. Uluchev, Prof. M. Drinov Acad. Publ. House, Sofia, 2004, 163–175 | MR

[5] K. Yu. Osipenko, “O vosstanovlenii resheniya zadachi Dirikhle po netochnym iskhodnym dannym”, Vladikavkaz. matem. zhurn., 6:4 (2004), 55–62 | MR | Zbl