On Bordisms of Real Algebraic $M$-Varieties
Matematičeskie zametki, Tome 81 (2007) no. 5, pp. 724-732.

Voir la notice de l'article provenant de la source Math-Net.Ru

Any morphism of nonsingular complete real algebraic varieties $F\colon Y\to X$ determines a holomorphic mapping of the sets of complex points $F_{\mathbb C}\colon Y(\mathbb C)\to X(\mathbb C)$ as well as a differentiable mapping of the sets of real points $F_{\mathbb R}\colon Y(\mathbb R)\to X(\mathbb R)$. These two mappings determine classes of nonoriented bordisms $[F_{\mathbb C}]\in\operatorname{MO}_{2m}(X(\mathbb C))$, $[F_{\mathbb R}]\in\operatorname{MO}_m(X(\mathbb R))$, where $m=\dim Y$. The paper describes relationship between these two classes of bordisms.
Keywords: real holomorphic variety, real $M$-variety, nonoriented bordism, cohomology operations, Harnack–Thom inequality, Leray spectral sequence.
Mots-clés : equivariant bordism
@article{MZM_2007_81_5_a9,
     author = {V. A. Krasnov},
     title = {On {Bordisms} of {Real} {Algebraic} $M${-Varieties}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {724--732},
     publisher = {mathdoc},
     volume = {81},
     number = {5},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a9/}
}
TY  - JOUR
AU  - V. A. Krasnov
TI  - On Bordisms of Real Algebraic $M$-Varieties
JO  - Matematičeskie zametki
PY  - 2007
SP  - 724
EP  - 732
VL  - 81
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a9/
LA  - ru
ID  - MZM_2007_81_5_a9
ER  - 
%0 Journal Article
%A V. A. Krasnov
%T On Bordisms of Real Algebraic $M$-Varieties
%J Matematičeskie zametki
%D 2007
%P 724-732
%V 81
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a9/
%G ru
%F MZM_2007_81_5_a9
V. A. Krasnov. On Bordisms of Real Algebraic $M$-Varieties. Matematičeskie zametki, Tome 81 (2007) no. 5, pp. 724-732. http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a9/

[1] V. A. Krasnov, “Kharakteristicheskie klassy vektornykh rassloenii na veschestvennom algebraicheskom mnogoobrazii”, Izv. AN SSSR. Ser. matem., 55:4 (1991), 716–746 | MR | Zbl

[2] V. A. Krasnov, “Neravenstva Garnaka–Toma dlya otobrazhenii veschestvennykh algebraicheskikh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 47:2 (1983), 268–297 | MR | Zbl

[3] V. A. Krasnov, “Algebraicheskie tsikly na veschestvennom algebraicheskom $GM$-mnogoobrazii i ikh prilozheniya”, Izv. RAN. Ser. matem., 57:4 (1993), 153–173 | MR | Zbl

[4] U. I. Syan, Kogomologicheskaya teoriya topologicheskikh grupp preobrazovanii, Mir, M., 1979 | MR | Zbl

[5] V. A. Krasnov, “Veschestvennye algebraicheskie $GM$-mnogoobraziya”, Izv. RAN. Ser. matem., 62:3 (1998), 39–66 | MR | Zbl

[6] T. tom Dik, Gruppy preobrazovanii i teoriya predstavlenii, Mir, M., 1982 | MR | Zbl