Absolute and Uniform Convergence of Eigenfunction Expansions of Integral Operators with Kernels Admitting Derivative Discontinuities on the Diagonals
Matematičeskie zametki, Tome 81 (2007) no. 5, pp. 713-723
Voir la notice de l'article provenant de la source Math-Net.Ru
An analog of Szasz's theorem on the absolute convergence of trigonometric Fourier series is established for expansions in the eigen and associated functions of integral operators some of whose kernels involve derivatives with discontinuities on the diagonals.
Keywords:
integral operator, trigonometric Fourier series, Fredholm resolvent, Szasz's theorem on absolute convergence, boundary-value problem, modulus of continuity.
@article{MZM_2007_81_5_a8,
author = {V. V. Kornev},
title = {Absolute and {Uniform} {Convergence} of {Eigenfunction} {Expansions} of {Integral} {Operators} with {Kernels} {Admitting} {Derivative} {Discontinuities} on the {Diagonals}},
journal = {Matemati\v{c}eskie zametki},
pages = {713--723},
publisher = {mathdoc},
volume = {81},
number = {5},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a8/}
}
TY - JOUR AU - V. V. Kornev TI - Absolute and Uniform Convergence of Eigenfunction Expansions of Integral Operators with Kernels Admitting Derivative Discontinuities on the Diagonals JO - Matematičeskie zametki PY - 2007 SP - 713 EP - 723 VL - 81 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a8/ LA - ru ID - MZM_2007_81_5_a8 ER -
%0 Journal Article %A V. V. Kornev %T Absolute and Uniform Convergence of Eigenfunction Expansions of Integral Operators with Kernels Admitting Derivative Discontinuities on the Diagonals %J Matematičeskie zametki %D 2007 %P 713-723 %V 81 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a8/ %G ru %F MZM_2007_81_5_a8
V. V. Kornev. Absolute and Uniform Convergence of Eigenfunction Expansions of Integral Operators with Kernels Admitting Derivative Discontinuities on the Diagonals. Matematičeskie zametki, Tome 81 (2007) no. 5, pp. 713-723. http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a8/