Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2007_81_5_a6, author = {E. V. Zakharova}, title = {On the {Common} {Part} of the {Spectrum} of {Finite} {Difference} {Operators} {Generated} by {Systems} of {Polynomials}}, journal = {Matemati\v{c}eskie zametki}, pages = {703--706}, publisher = {mathdoc}, volume = {81}, number = {5}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a6/} }
TY - JOUR AU - E. V. Zakharova TI - On the Common Part of the Spectrum of Finite Difference Operators Generated by Systems of Polynomials JO - Matematičeskie zametki PY - 2007 SP - 703 EP - 706 VL - 81 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a6/ LA - ru ID - MZM_2007_81_5_a6 ER -
E. V. Zakharova. On the Common Part of the Spectrum of Finite Difference Operators Generated by Systems of Polynomials. Matematičeskie zametki, Tome 81 (2007) no. 5, pp. 703-706. http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a6/
[1] E. M. Nikishin, V. N. Sorokin, Ratsionalnye approksimatsii i ortogonalnost, Nauka, M., 1988 | MR | Zbl
[2] A. I. Aptekarev, V. A. Kaliaguine, “Complex rational approximation and difference operators”, Proceedings of the Third International Conference on Functional Analysis and Approximation Theory, vol. I (Acquafredda di Maratea, 1996), Rend. Circ. Mat. Palermo (2) Suppl., 52, 1998, 3–21 | MR | Zbl
[3] V. A. Kalyagin, “Approksimatsii Ermita–Pade i spektralnyi analiz nesimmetrichnykh raznostnykh operatorov”, Matem. sb., 185:6 (1994), 79–100 | MR | Zbl
[4] B. Beckermann, V. Kaliaguine, “Diagonal of the Padé table and the approximation of the Weyl function of second order difference operator”, Constr. Approx., 13:4 (1997), 481–510 | DOI | MR | Zbl
[5] A. Aptekarev, V. Kaliaguine, J. Van Iseghem, “Genetic sum representations for the moments of Stieltjes functions and their applications”, Constr. Approx., 16:4 (2000), 487–524 | DOI | MR | Zbl
[6] A. Aptekarev, V. Kalyagin, G. Lopez, I. Rocha, “On the limit behavior of recurrence coefficients for multiple orthogonal polynomials”, J. Approx. Theory, 139:1–2 (2006), 346–370 | DOI | MR | Zbl
[7] J. Gilewicz, E. Zakharova, Le spectre de l'opérateur complex périodique de Jacobi dans $l^2(N)$, Preprint no. 4167, CPT, Luminy, 2000