On the Common Part of the Spectrum of Finite Difference Operators Generated by Systems of Polynomials
Matematičeskie zametki, Tome 81 (2007) no. 5, pp. 703-706.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the spectra of finite difference operators generated by systems of multiple orthogonal polynomials and the corresponding systems of measures of Stieltjes type. We show that the common support of the orthogonality measures coincides with the intersection of the spectra of the family of finite difference operators with common collection of Weyl functions.
Keywords: multiple orthogonality polynomials, difference operators, essential spectrum, Hardy space, Toeplitz operator.
Mots-clés : Hessenberg matrix
@article{MZM_2007_81_5_a6,
     author = {E. V. Zakharova},
     title = {On the {Common} {Part} of the {Spectrum} of {Finite} {Difference} {Operators} {Generated} by {Systems} of {Polynomials}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {703--706},
     publisher = {mathdoc},
     volume = {81},
     number = {5},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a6/}
}
TY  - JOUR
AU  - E. V. Zakharova
TI  - On the Common Part of the Spectrum of Finite Difference Operators Generated by Systems of Polynomials
JO  - Matematičeskie zametki
PY  - 2007
SP  - 703
EP  - 706
VL  - 81
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a6/
LA  - ru
ID  - MZM_2007_81_5_a6
ER  - 
%0 Journal Article
%A E. V. Zakharova
%T On the Common Part of the Spectrum of Finite Difference Operators Generated by Systems of Polynomials
%J Matematičeskie zametki
%D 2007
%P 703-706
%V 81
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a6/
%G ru
%F MZM_2007_81_5_a6
E. V. Zakharova. On the Common Part of the Spectrum of Finite Difference Operators Generated by Systems of Polynomials. Matematičeskie zametki, Tome 81 (2007) no. 5, pp. 703-706. http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a6/

[1] E. M. Nikishin, V. N. Sorokin, Ratsionalnye approksimatsii i ortogonalnost, Nauka, M., 1988 | MR | Zbl

[2] A. I. Aptekarev, V. A. Kaliaguine, “Complex rational approximation and difference operators”, Proceedings of the Third International Conference on Functional Analysis and Approximation Theory, vol. I (Acquafredda di Maratea, 1996), Rend. Circ. Mat. Palermo (2) Suppl., 52, 1998, 3–21 | MR | Zbl

[3] V. A. Kalyagin, “Approksimatsii Ermita–Pade i spektralnyi analiz nesimmetrichnykh raznostnykh operatorov”, Matem. sb., 185:6 (1994), 79–100 | MR | Zbl

[4] B. Beckermann, V. Kaliaguine, “Diagonal of the Padé table and the approximation of the Weyl function of second order difference operator”, Constr. Approx., 13:4 (1997), 481–510 | DOI | MR | Zbl

[5] A. Aptekarev, V. Kaliaguine, J. Van Iseghem, “Genetic sum representations for the moments of Stieltjes functions and their applications”, Constr. Approx., 16:4 (2000), 487–524 | DOI | MR | Zbl

[6] A. Aptekarev, V. Kalyagin, G. Lopez, I. Rocha, “On the limit behavior of recurrence coefficients for multiple orthogonal polynomials”, J. Approx. Theory, 139:1–2 (2006), 346–370 | DOI | MR | Zbl

[7] J. Gilewicz, E. Zakharova, Le spectre de l'opérateur complex périodique de Jacobi dans $l^2(N)$, Preprint no. 4167, CPT, Luminy, 2000