Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2007_81_5_a2, author = {A. A. Borisenko and O. V. Leibina}, title = {Chern--Lashof {Absolute} {Curvature} of {Complex} {Submanifolds} and {Volumes} of {Grassmann} {Images}}, journal = {Matemati\v{c}eskie zametki}, pages = {666--675}, publisher = {mathdoc}, volume = {81}, number = {5}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a2/} }
TY - JOUR AU - A. A. Borisenko AU - O. V. Leibina TI - Chern--Lashof Absolute Curvature of Complex Submanifolds and Volumes of Grassmann Images JO - Matematičeskie zametki PY - 2007 SP - 666 EP - 675 VL - 81 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a2/ LA - ru ID - MZM_2007_81_5_a2 ER -
A. A. Borisenko; O. V. Leibina. Chern--Lashof Absolute Curvature of Complex Submanifolds and Volumes of Grassmann Images. Matematičeskie zametki, Tome 81 (2007) no. 5, pp. 666-675. http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a2/
[1] D. Ferus, “On the volume of the generalized Gauss map”, Geom. Dedicata, 14:3 (1983), 237–242 | DOI | MR | Zbl
[2] D. Ferus, Totale Absolutkrümmung in Differentialgeometrie und -topologie, Lecture Notes in Math., 66, Springer-Verlag, Berlin–New York, 1968 | MR | Zbl
[3] K. Leichtweiss, “Über eine Art von Krümmungsinvarianten beliebiger Untermannigfaltigkeiten des $n$-dimensionalen euklidischen Raums”, Abh. Math. Sem. Univ. Hamburg, 26 (1963/64), 155–190 | DOI | MR | Zbl
[4] Sh. Kobayasi, K. Nomidzu, Osnovy differentsialnoi geometrii, t. 2, Nauka, M., 1969 | MR | Zbl
[5] A. A. Borisenko, O. V. Leibina, “Klassifikatsiya tochek dvumernykh i trekhmernykh kompleksnykh poverkhnostei po grassmanovu obrazu”, Matem. fizika, analiz, geometriya, 9:4 (2002), 572–594 | MR | Zbl
[6] O. V. Leibina, “O kompleksnykh podmnogoobraziyakh s maksimalnoi golomorfnoi kriviznoi grassmanova obraza”, Matem. zametki, 81:4 (2007), 561–568 | MR | Zbl
[7] J. Erbacher, “Reduction of the codimension of an isometric immersion”, J. Differential Geom., 5 (1971), 333–340 | MR | Zbl