Some Problems of Approximation of the Generalized Carathéodory Function in a Special Domain $\Omega_\nu$
Matematičeskie zametki, Tome 81 (2007) no. 5, pp. 792-796
Cet article a éte moissonné depuis la source Math-Net.Ru
Keywords:
meromorphic function, self-adjoint operator, generalized Carathéodory function, Pontryagin space, Nevanlinna function, Hilbert space.
@article{MZM_2007_81_5_a17,
author = {E. V. Lopushanskaya},
title = {Some {Problems} of {Approximation} of the {Generalized} {Carath\'eodory} {Function} in a {Special} {Domain} $\Omega_\nu$},
journal = {Matemati\v{c}eskie zametki},
pages = {792--796},
year = {2007},
volume = {81},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a17/}
}
TY - JOUR AU - E. V. Lopushanskaya TI - Some Problems of Approximation of the Generalized Carathéodory Function in a Special Domain $\Omega_\nu$ JO - Matematičeskie zametki PY - 2007 SP - 792 EP - 796 VL - 81 IS - 5 UR - http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a17/ LA - ru ID - MZM_2007_81_5_a17 ER -
E. V. Lopushanskaya. Some Problems of Approximation of the Generalized Carathéodory Function in a Special Domain $\Omega_\nu$. Matematičeskie zametki, Tome 81 (2007) no. 5, pp. 792-796. http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a17/
[1] T. Ya. Azizov, I. S. Iokhvidov, Osnovy teorii lineinykh operatorov v prostranstvakh s indefinitnoi metrikoi, Nauka, M., 1986 | MR | Zbl
[2] M. G. Kreĭn, H. Langer, Math. Nachr., 77 (1977), 187–236 | DOI | MR | Zbl
[3] N. I. Akhiezer, I. M. Glazman, Teoriya lineinykh operatorov v gilbertovom prostranstve, Nauka, M., 1966 | MR | Zbl