Completeness and Basis Properties of Systems of Exponentials in Weighted Spaces $L^p(-\pi,\pi)$
Matematičeskie zametki, Tome 81 (2007) no. 5, pp. 776-788
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the system of exponentials $e(\Lambda)=\{e^{i\lambda_nt}\}_{n\in\mathbb Z}$, where
$$
\lambda_n=n+\biggl(\frac{1+\alpha}p+l(|n|)\biggr)\operatorname{sign}n,
$$
$l(t)$ is a slowly varying function, and $l(t)\to 0$, $t\to\infty$. We obtain an estimate for the generating function of the sequence $\{\lambda_n\}$ and, with its help, find a completeness criterion and a basis condition for the system $e(\Lambda)$ in the weight spaces $L^p(-\pi,\pi)$. We also study some special cases of the function $l(t)$.
Keywords:
system of exponentials, completeness of a system of functions, the weight spaces $L^p(-\pi,\pi)$, Cauchy's theorem, Riesz basis, generating function.
Mots-clés : Laplace transform
Mots-clés : Laplace transform
@article{MZM_2007_81_5_a15,
author = {A. A. Yukhimenko},
title = {Completeness and {Basis} {Properties} of {Systems} of {Exponentials} in {Weighted} {Spaces} $L^p(-\pi,\pi)$},
journal = {Matemati\v{c}eskie zametki},
pages = {776--788},
publisher = {mathdoc},
volume = {81},
number = {5},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a15/}
}
TY - JOUR AU - A. A. Yukhimenko TI - Completeness and Basis Properties of Systems of Exponentials in Weighted Spaces $L^p(-\pi,\pi)$ JO - Matematičeskie zametki PY - 2007 SP - 776 EP - 788 VL - 81 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a15/ LA - ru ID - MZM_2007_81_5_a15 ER -
A. A. Yukhimenko. Completeness and Basis Properties of Systems of Exponentials in Weighted Spaces $L^p(-\pi,\pi)$. Matematičeskie zametki, Tome 81 (2007) no. 5, pp. 776-788. http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a15/