Local Homology and Dimensional Full-Valuedness
Matematičeskie zametki, Tome 81 (2007) no. 5, pp. 643-659.

Voir la notice de l'article provenant de la source Math-Net.Ru

A natural criterion for dimensional full-valuedness of locally compact spaces with finitely generated local homology is given.
Keywords: locally compact space, dimensional full-valuedness, local homology, quasipolyhedron, homological polyhedron.
Mots-clés : homological dimension
@article{MZM_2007_81_5_a0,
     author = {D. V. Artamonov},
     title = {Local {Homology} and {Dimensional} {Full-Valuedness}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {643--659},
     publisher = {mathdoc},
     volume = {81},
     number = {5},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a0/}
}
TY  - JOUR
AU  - D. V. Artamonov
TI  - Local Homology and Dimensional Full-Valuedness
JO  - Matematičeskie zametki
PY  - 2007
SP  - 643
EP  - 659
VL  - 81
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a0/
LA  - ru
ID  - MZM_2007_81_5_a0
ER  - 
%0 Journal Article
%A D. V. Artamonov
%T Local Homology and Dimensional Full-Valuedness
%J Matematičeskie zametki
%D 2007
%P 643-659
%V 81
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a0/
%G ru
%F MZM_2007_81_5_a0
D. V. Artamonov. Local Homology and Dimensional Full-Valuedness. Matematičeskie zametki, Tome 81 (2007) no. 5, pp. 643-659. http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a0/

[1] E. Dyer, “On the dimention of products”, Fund. Math., 47:2 (1959), 141–160 | MR | Zbl

[2] K. Borsuk, “Opening of the conference on geometric topology”, Proceedings of the International Conference on Geometric Topology (Warszawa, August 24 – September 2, 1978), PWN, Warszawa, 1980, 12–14 | MR | Zbl

[3] A. N. Dranishnikov, “Gomologicheskaya teoriya razmernosti”, UMN, 43:4 (1988), 11–55 | MR | Zbl

[4] A. N. Dranishnikov, “O razmernosti proizvedeniya $ANR$-kompaktov”, Dokl. AN SSSR, 300:5 (1988), 1045–1049 | MR | Zbl

[5] J. E. West, “Mapping Hilbert cube manifolds to ANR's: a solution of a conjecture of Borsuk”, Ann. of Math. (2), 106:1 (1977), 1–18 | DOI | MR | Zbl

[6] D. Chepmen, Lektsii o $Q$-mnogoobraziyakh, Mir, M., 1981 | MR | Zbl

[7] A. E. Kharlap, “Lokalnye gomologii i kogomologii, gomologicheskaya razmernost i obobschennye mnogoobraziya”, Matem. sb., 96 (138):3 (1975), 347–373 | MR | Zbl

[8] G. Bredon, Teoriya puchkov, Nauka, M., 1988 | MR | Zbl

[9] E. G. Sklyarenko, “O gomologicheskikh umnozheniyakh”, Izv. RAN. Ser. matem., 61:1 (1997), 157–176 | MR | Zbl

[10] E. G. Sklyarenko, “K teorii gomologii, assotsiirovannoi s kogomologiyami Aleksandrova–Chekha”, UMN, 34:6 (1979), 90–118 | MR | Zbl

[11] E. M. Beniaminov, E. G. Sklyarenko, “O lokalnykh gruppakh kogomologii”, Dokl. AN SSSR, 176:6 (1967), 987–990 | MR | Zbl

[12] W. J. R. Mitchell, “Homology manifolds, inverse systems and cohomological local connectedness”, J. London Math. Soc. (2), 19:2 (1979), 348–358 | DOI | MR | Zbl

[13] D. Rote, “Perifericheskaya kogomologicheskaya lokalnaya svyaznost”, Fund. Math., 116:1 (1983), 53–66 | MR | Zbl

[14] E. G. Sklyarenko, “K teorii obobschennykh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 35:4 (1971), 831–843 | MR | Zbl

[15] D. Rote, “O kharakteristike gomologicheskoi razmernosti lokalnymi gomologiyami i kogomologiyami”, Math. Nachr., 113 (1983), 53–57 | DOI | MR | Zbl

[16] V. I. Kuzminov, “Gomologicheskaya teoriya razmernosti”, UMN, 23:5 (1968), 3–49 | MR | Zbl

[17] N. Stinrod, S. Eilenberg, Osnovaniya algebraicheskoi topologii, Fizmatgiz, M., 1958 | MR | Zbl

[18] K. Borsuk, Teoriya retraktov, Mir, M., 1971 | MR | Zbl

[19] G. E. Bredon, “Wilder manifolds are locally orientable”, Proc. Nat. Acad. Sci. USA, 63:4 (1969), 1079–1081 | DOI | MR | Zbl