On Complex Submanifolds Whose Grassmann Image Has Maximal Holomorphic Curvature
Matematičeskie zametki, Tome 81 (2007) no. 4, pp. 561-568.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that if the holomorphic curvature of a complex Grassmann manifold in two-dimensional directions tangent to a nondegenerate Grassmann image of a nonsingular complex surface attains the maximal possible value along all directions, then the surface is a complex hypersurface.
Keywords: holomorphic curvature, Grassmann image of a complex surface, complex index of nullity, sectional curvature, normal curvature, normal connection, flat metric.
@article{MZM_2007_81_4_a9,
     author = {O. V. Leibina},
     title = {On {Complex} {Submanifolds} {Whose} {Grassmann} {Image} {Has} {Maximal} {Holomorphic} {Curvature}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {561--568},
     publisher = {mathdoc},
     volume = {81},
     number = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_4_a9/}
}
TY  - JOUR
AU  - O. V. Leibina
TI  - On Complex Submanifolds Whose Grassmann Image Has Maximal Holomorphic Curvature
JO  - Matematičeskie zametki
PY  - 2007
SP  - 561
EP  - 568
VL  - 81
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_81_4_a9/
LA  - ru
ID  - MZM_2007_81_4_a9
ER  - 
%0 Journal Article
%A O. V. Leibina
%T On Complex Submanifolds Whose Grassmann Image Has Maximal Holomorphic Curvature
%J Matematičeskie zametki
%D 2007
%P 561-568
%V 81
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_81_4_a9/
%G ru
%F MZM_2007_81_4_a9
O. V. Leibina. On Complex Submanifolds Whose Grassmann Image Has Maximal Holomorphic Curvature. Matematičeskie zametki, Tome 81 (2007) no. 4, pp. 561-568. http://geodesic.mathdoc.fr/item/MZM_2007_81_4_a9/

[1] Y. C. Wong, “Sectional curvatures of Grassmann manifolds”, Proc. Nat. Acad. Sci. USA, 60:1 (1968), 75–79 | DOI | MR | Zbl

[2] A. A. Borisenko, Yu. A. Nikolaevskii, “O poverkhnostyakh s maksimalnoi kriviznoi grassmanova obraza”, Matem. zametki, 48:3 (1990), 12–19 | MR | Zbl

[3] Y. Muto, “The Gauss map of a submanifold in a Euclidean space”, J. Math. Soc. Japan., 30:1 (1978), 85–100 | DOI | MR | Zbl

[4] A. A. Borisenko, Yu. A. Nikolaevskii, “Mnogoobraziya Grassmana i grassmanov obraz podmnogoobrazii”, UMN, 46:2 (1991), 41–83 | MR | Zbl

[5] A. A. Borisenko, O. V. Leibina, “Klassifikatsiya tochek dvumernykh i trekhmernykh kompleksnykh poverkhnostei po grassmanovu obrazu”, Matem. fizika, analiz, geometriya, 9:4 (2002), 572–594 | MR | Zbl

[6] J. Erbacher, “Reduction of the codimension of an isometric immersion”, J. Diff. Geom., 5 (1971), 333–340 | MR | Zbl