On Complex Submanifolds Whose Grassmann Image Has Maximal Holomorphic Curvature
Matematičeskie zametki, Tome 81 (2007) no. 4, pp. 561-568
Voir la notice de l'article provenant de la source Math-Net.Ru
We show that if the holomorphic curvature of a complex Grassmann manifold in two-dimensional directions tangent to a nondegenerate Grassmann image of a nonsingular complex surface attains the maximal possible value along all directions, then the surface is a complex hypersurface.
Keywords:
holomorphic curvature, Grassmann image of a complex surface, complex index of nullity, sectional curvature, normal curvature, normal connection, flat metric.
@article{MZM_2007_81_4_a9,
author = {O. V. Leibina},
title = {On {Complex} {Submanifolds} {Whose} {Grassmann} {Image} {Has} {Maximal} {Holomorphic} {Curvature}},
journal = {Matemati\v{c}eskie zametki},
pages = {561--568},
publisher = {mathdoc},
volume = {81},
number = {4},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_4_a9/}
}
O. V. Leibina. On Complex Submanifolds Whose Grassmann Image Has Maximal Holomorphic Curvature. Matematičeskie zametki, Tome 81 (2007) no. 4, pp. 561-568. http://geodesic.mathdoc.fr/item/MZM_2007_81_4_a9/