Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2007_81_4_a9, author = {O. V. Leibina}, title = {On {Complex} {Submanifolds} {Whose} {Grassmann} {Image} {Has} {Maximal} {Holomorphic} {Curvature}}, journal = {Matemati\v{c}eskie zametki}, pages = {561--568}, publisher = {mathdoc}, volume = {81}, number = {4}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_4_a9/} }
O. V. Leibina. On Complex Submanifolds Whose Grassmann Image Has Maximal Holomorphic Curvature. Matematičeskie zametki, Tome 81 (2007) no. 4, pp. 561-568. http://geodesic.mathdoc.fr/item/MZM_2007_81_4_a9/
[1] Y. C. Wong, “Sectional curvatures of Grassmann manifolds”, Proc. Nat. Acad. Sci. USA, 60:1 (1968), 75–79 | DOI | MR | Zbl
[2] A. A. Borisenko, Yu. A. Nikolaevskii, “O poverkhnostyakh s maksimalnoi kriviznoi grassmanova obraza”, Matem. zametki, 48:3 (1990), 12–19 | MR | Zbl
[3] Y. Muto, “The Gauss map of a submanifold in a Euclidean space”, J. Math. Soc. Japan., 30:1 (1978), 85–100 | DOI | MR | Zbl
[4] A. A. Borisenko, Yu. A. Nikolaevskii, “Mnogoobraziya Grassmana i grassmanov obraz podmnogoobrazii”, UMN, 46:2 (1991), 41–83 | MR | Zbl
[5] A. A. Borisenko, O. V. Leibina, “Klassifikatsiya tochek dvumernykh i trekhmernykh kompleksnykh poverkhnostei po grassmanovu obrazu”, Matem. fizika, analiz, geometriya, 9:4 (2002), 572–594 | MR | Zbl
[6] J. Erbacher, “Reduction of the codimension of an isometric immersion”, J. Diff. Geom., 5 (1971), 333–340 | MR | Zbl