Minimization of the Uncertainty Constant of the Family of Meyer Wavelets
Matematičeskie zametki, Tome 81 (2007) no. 4, pp. 553-560
Cet article a éte moissonné depuis la source Math-Net.Ru
We obtain a simplified expression for the uncertainty constant of a Meyer wavelet. Using this expression, we find the lower bound of the uncertainty constant and construct the Ritz minimizing sequence.
Keywords:
Meyer wavelet, Ritz minimizing sequence, uncertainty constant, spline, Cauchy–Bunyakovskii inequality, Heisenberg uncertainty principle.
Mots-clés : Fourier transform
Mots-clés : Fourier transform
@article{MZM_2007_81_4_a8,
author = {E. A. Lebedeva},
title = {Minimization of the {Uncertainty} {Constant} of the {Family} of {Meyer} {Wavelets}},
journal = {Matemati\v{c}eskie zametki},
pages = {553--560},
year = {2007},
volume = {81},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_4_a8/}
}
E. A. Lebedeva. Minimization of the Uncertainty Constant of the Family of Meyer Wavelets. Matematičeskie zametki, Tome 81 (2007) no. 4, pp. 553-560. http://geodesic.mathdoc.fr/item/MZM_2007_81_4_a8/
[1] Y. Meyer, “Principe d'incertitude, bases Hilbertiennes et algèbras d'opérateurs”, Seminaire Bourbaki, Astérisque, 145–146, Paris, 1987, 209–223 | MR | Zbl
[2] I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Series in Applied Mathematics, SIAM, Philadelphia, 1992 | MR | Zbl
[3] V. S. Buslaev, Variatsionnoe ischislenie, Izd-vo LGU, L., 1980 | Zbl
[4] G. Battle, “Heisenberg inequalities for wavelets states”, Appl. Comp. Harm. Analysis., 4 (1997), 119–146 | DOI | MR | Zbl
[5] S. B. Stechkin, Yu. N. Subbotin, Splainy v vychislitelnoi matematike, Nauka, M., 1976 | MR | Zbl