Approximation of Functions on the Real Axis by F\'ejer-Type Operators in the Generalized H\"older Metric
Matematičeskie zametki, Tome 81 (2007) no. 4, pp. 547-552.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the orders of approximation of functions on the whole real axis by operators of Fejér type in the Banach space with the so-called generalized Hölder metric.
Keywords: approximation of uniformly continuous and bounded functions, Fejér operator, generalized Hölder metric, Banach space, Fourier series.
@article{MZM_2007_81_4_a7,
     author = {R. A. Lasuriya},
     title = {Approximation of {Functions} on the {Real} {Axis} by {F\'ejer-Type} {Operators} in the {Generalized} {H\"older} {Metric}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {547--552},
     publisher = {mathdoc},
     volume = {81},
     number = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_4_a7/}
}
TY  - JOUR
AU  - R. A. Lasuriya
TI  - Approximation of Functions on the Real Axis by F\'ejer-Type Operators in the Generalized H\"older Metric
JO  - Matematičeskie zametki
PY  - 2007
SP  - 547
EP  - 552
VL  - 81
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_81_4_a7/
LA  - ru
ID  - MZM_2007_81_4_a7
ER  - 
%0 Journal Article
%A R. A. Lasuriya
%T Approximation of Functions on the Real Axis by F\'ejer-Type Operators in the Generalized H\"older Metric
%J Matematičeskie zametki
%D 2007
%P 547-552
%V 81
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_81_4_a7/
%G ru
%F MZM_2007_81_4_a7
R. A. Lasuriya. Approximation of Functions on the Real Axis by F\'ejer-Type Operators in the Generalized H\"older Metric. Matematičeskie zametki, Tome 81 (2007) no. 4, pp. 547-552. http://geodesic.mathdoc.fr/item/MZM_2007_81_4_a7/

[1] N. I. Akhiezer, Lektsii po teorii approksimatsii, Gostekhizdat, M., 1947 | MR | Zbl

[2] S. Prösdorf, “Zur Konvergens der Fourierreihen Hölderstiger Funktionen”, Math. Nachr., 69 (1975), 7–14 | DOI | MR | Zbl

[3] Tikam Singh, “The approximation of continuous functions in the Hölder metric”, Matematichni Vesnik, 43:3–4 (1991), 111–118 | MR | Zbl

[4] P. N. Mohapatra, P. Chandra, “Degree of approximation of functions in the Hölder metric”, Acta Math. Hung., 41:1–2 (1983), 67–76 | DOI | MR | Zbl

[5] G. Khardi, D. Littlvud, G. Polia, Neravenstva, IL, M., 1948 | MR | Zbl