Approximation of Functions on the Real Axis by Féjer-Type Operators in the Generalized Hölder Metric
Matematičeskie zametki, Tome 81 (2007) no. 4, pp. 547-552 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we consider the orders of approximation of functions on the whole real axis by operators of Fejér type in the Banach space with the so-called generalized Hölder metric.
Keywords: approximation of uniformly continuous and bounded functions, generalized Hölder metric, Banach space, Fourier series.
Mots-clés : Fejér operator
@article{MZM_2007_81_4_a7,
     author = {R. A. Lasuriya},
     title = {Approximation of {Functions} on the {Real} {Axis} by {F\'ejer-Type} {Operators} in the {Generalized} {H\"older} {Metric}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {547--552},
     year = {2007},
     volume = {81},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_4_a7/}
}
TY  - JOUR
AU  - R. A. Lasuriya
TI  - Approximation of Functions on the Real Axis by Féjer-Type Operators in the Generalized Hölder Metric
JO  - Matematičeskie zametki
PY  - 2007
SP  - 547
EP  - 552
VL  - 81
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_81_4_a7/
LA  - ru
ID  - MZM_2007_81_4_a7
ER  - 
%0 Journal Article
%A R. A. Lasuriya
%T Approximation of Functions on the Real Axis by Féjer-Type Operators in the Generalized Hölder Metric
%J Matematičeskie zametki
%D 2007
%P 547-552
%V 81
%N 4
%U http://geodesic.mathdoc.fr/item/MZM_2007_81_4_a7/
%G ru
%F MZM_2007_81_4_a7
R. A. Lasuriya. Approximation of Functions on the Real Axis by Féjer-Type Operators in the Generalized Hölder Metric. Matematičeskie zametki, Tome 81 (2007) no. 4, pp. 547-552. http://geodesic.mathdoc.fr/item/MZM_2007_81_4_a7/

[1] N. I. Akhiezer, Lektsii po teorii approksimatsii, Gostekhizdat, M., 1947 | MR | Zbl

[2] S. Prösdorf, “Zur Konvergens der Fourierreihen Hölderstiger Funktionen”, Math. Nachr., 69 (1975), 7–14 | DOI | MR | Zbl

[3] Tikam Singh, “The approximation of continuous functions in the Hölder metric”, Matematichni Vesnik, 43:3–4 (1991), 111–118 | MR | Zbl

[4] P. N. Mohapatra, P. Chandra, “Degree of approximation of functions in the Hölder metric”, Acta Math. Hung., 41:1–2 (1983), 67–76 | DOI | MR | Zbl

[5] G. Khardi, D. Littlvud, G. Polia, Neravenstva, IL, M., 1948 | MR | Zbl