Non-Self-Adjoint Sturm--Liouville Operators with Matrix Potentials
Matematičeskie zametki, Tome 81 (2007) no. 4, pp. 496-506
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain asymptotic formulas for non-self-adjoint operators generated by the Sturm–Liouville system and quasiperiodic boundary conditions. Using these asymptotic formulas, we obtain conditions on the potential for which the system of root vectors of the operator under consideration forms a Riesz basis.
Keywords:
Sturm–Liouville operator, non-self-adjoint operator, quasiperiodic boundary condition, Riesz basis, root function, Bessel operator.
Mots-clés : Jordan chain
Mots-clés : Jordan chain
@article{MZM_2007_81_4_a2,
author = {O. A. Veliev},
title = {Non-Self-Adjoint {Sturm--Liouville} {Operators} with {Matrix} {Potentials}},
journal = {Matemati\v{c}eskie zametki},
pages = {496--506},
publisher = {mathdoc},
volume = {81},
number = {4},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_4_a2/}
}
O. A. Veliev. Non-Self-Adjoint Sturm--Liouville Operators with Matrix Potentials. Matematičeskie zametki, Tome 81 (2007) no. 4, pp. 496-506. http://geodesic.mathdoc.fr/item/MZM_2007_81_4_a2/