Uniqueness of Multiple Walsh Series for the Convergence on Binary Cubes
Matematičeskie zametki, Tome 81 (2007) no. 4, pp. 586-598.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider uniqueness problems for multiple Walsh series convergent on binary cubes on a multidimensional binary group. We find conditions under which a given finite or countable set is a set of uniqueness.
Keywords: multiple Walsh series, convergence on binary cubes, multidimensional binary group, uniqueness group, uniqueness set, index set.
@article{MZM_2007_81_4_a11,
     author = {N. S. Moreva},
     title = {Uniqueness of {Multiple} {Walsh} {Series} for the {Convergence} on {Binary} {Cubes}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {586--598},
     publisher = {mathdoc},
     volume = {81},
     number = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_4_a11/}
}
TY  - JOUR
AU  - N. S. Moreva
TI  - Uniqueness of Multiple Walsh Series for the Convergence on Binary Cubes
JO  - Matematičeskie zametki
PY  - 2007
SP  - 586
EP  - 598
VL  - 81
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_81_4_a11/
LA  - ru
ID  - MZM_2007_81_4_a11
ER  - 
%0 Journal Article
%A N. S. Moreva
%T Uniqueness of Multiple Walsh Series for the Convergence on Binary Cubes
%J Matematičeskie zametki
%D 2007
%P 586-598
%V 81
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_81_4_a11/
%G ru
%F MZM_2007_81_4_a11
N. S. Moreva. Uniqueness of Multiple Walsh Series for the Convergence on Binary Cubes. Matematičeskie zametki, Tome 81 (2007) no. 4, pp. 586-598. http://geodesic.mathdoc.fr/item/MZM_2007_81_4_a11/

[1] F. Schipp, W. R. Wade, P. Simon, Walsh Series. An Introduction to Dyadic Harmonic Analysis, Academiai Kiado, Budapest, 1990 | MR | Zbl

[2] S. F. Lukomskii, “On $U$-set for multiple Walsh series”, Anal. Math., 18:2 (1992), 127–138 | DOI | MR | Zbl

[3] M. G. Plotnikov, “Ob $U$-mnozhestvakh dlya kratnykh ryadov Uolsha”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Tezizy dokladov 13-i Saratov. zimnei shkoly, Izd. “Nauchnaya kniga”, Saratov, 2006, 140–141

[4] F. Weisz, “Uniqueness of two-parameter dyadic martingales and Walsh–Fourier series”, Mathematica Pannonica, 9:1 (1998), 131–140 | MR | Zbl

[5] S. F. Lukomskii, “Ob absolyutnoi skhodimosti kratnykh ryadov Uolsha”, Izv. vuzov. Ser. matem., 1988, no. 4, 34–36 | MR | Zbl