On Subspaces of $C[0,1]$ Consisting of Nonsmooth Functions
Matematičeskie zametki, Tome 81 (2007) no. 4, pp. 490-495.

Voir la notice de l'article provenant de la source Math-Net.Ru

For each Hölder space $H^\omega$, we construct an infinite-dimensional closed subspace $G$ of $C[0,1]$, isomorphic to $l^1$ and such that, for each function $x\in G$ not identically zero, its restriction to the set of positive measure does not belong to the Hölder space $H^\omega$.
Keywords: Banach space, nonsmooth function, modulus of continuity
Mots-clés : Lebesgue measure.
@article{MZM_2007_81_4_a1,
     author = {E. I. Berezhnoi},
     title = {On {Subspaces} of $C[0,1]$ {Consisting} of {Nonsmooth} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {490--495},
     publisher = {mathdoc},
     volume = {81},
     number = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_4_a1/}
}
TY  - JOUR
AU  - E. I. Berezhnoi
TI  - On Subspaces of $C[0,1]$ Consisting of Nonsmooth Functions
JO  - Matematičeskie zametki
PY  - 2007
SP  - 490
EP  - 495
VL  - 81
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_81_4_a1/
LA  - ru
ID  - MZM_2007_81_4_a1
ER  - 
%0 Journal Article
%A E. I. Berezhnoi
%T On Subspaces of $C[0,1]$ Consisting of Nonsmooth Functions
%J Matematičeskie zametki
%D 2007
%P 490-495
%V 81
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_81_4_a1/
%G ru
%F MZM_2007_81_4_a1
E. I. Berezhnoi. On Subspaces of $C[0,1]$ Consisting of Nonsmooth Functions. Matematičeskie zametki, Tome 81 (2007) no. 4, pp. 490-495. http://geodesic.mathdoc.fr/item/MZM_2007_81_4_a1/

[1] V. P. Fonf, V. I. Gurariy, M. I. Kadets, “An infinite dimensional subspace of $C[0,1]$ consisting of nowhere differentiable functions”, C. R. Acad. Bulg. Sci., 52:11–12 (1999), 13–16 | MR | Zbl

[2] A. Zigmund, Trigonometricheskie ryady, t. 1, Mir, M., 1965 | MR | Zbl

[3] P. P. Petrushev, S. L. Troyanski, “O teoreme Banakha–Mazura ob universalnosti $C[0,1]$”, C. R. Acad. Bulg. Sci., 37:3 (1984), 283–285 | MR | Zbl

[4] V. I. Gurarii, “Lineinoe prostranstvo sostoyaschee iz vsyudu nedifferentsiruemykh funktsii”, C. R. Acad. Bulg. Sci., 44:5 (1991), 13–16 | MR | Zbl

[5] L. Rodriguez-Piazza, “Every separable Banach space is isometric to a space of continuous nowhere differentiable functions”, Proc. Amer. Math. Soc., 123:12 (1995), 3649–3654 | DOI | MR | Zbl

[6] E. I. Berezhnoi, “Podprostranstvo $C[0,1]$, sostoyaschee iz funktsii, ne imeyuschikh konechnykh odnostoronnikh proizvodnykh ni v odnoi tochke”, Matem. zametki, 73:3 (2003), 348–354 | MR | Zbl

[7] E. I. Berezhnoi, “Podprostranstvo prostranstva Gëldera, sostoyaschee iz samykh negladkikh funktsii”, Matem. zametki, 74:3 (2003), 329–339 | MR | Zbl

[8] E. I. Berezhnoi, “O podprostranstvakh prostranstv Gëldera, sostoyaschikh iz funktsii minimalnoi gladkosti”, Dokl. RAN, 399:4 (2004), 446–449 | MR