Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2007_81_4_a1, author = {E. I. Berezhnoi}, title = {On {Subspaces} of $C[0,1]$ {Consisting} of {Nonsmooth} {Functions}}, journal = {Matemati\v{c}eskie zametki}, pages = {490--495}, publisher = {mathdoc}, volume = {81}, number = {4}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_4_a1/} }
E. I. Berezhnoi. On Subspaces of $C[0,1]$ Consisting of Nonsmooth Functions. Matematičeskie zametki, Tome 81 (2007) no. 4, pp. 490-495. http://geodesic.mathdoc.fr/item/MZM_2007_81_4_a1/
[1] V. P. Fonf, V. I. Gurariy, M. I. Kadets, “An infinite dimensional subspace of $C[0,1]$ consisting of nowhere differentiable functions”, C. R. Acad. Bulg. Sci., 52:11–12 (1999), 13–16 | MR | Zbl
[2] A. Zigmund, Trigonometricheskie ryady, t. 1, Mir, M., 1965 | MR | Zbl
[3] P. P. Petrushev, S. L. Troyanski, “O teoreme Banakha–Mazura ob universalnosti $C[0,1]$”, C. R. Acad. Bulg. Sci., 37:3 (1984), 283–285 | MR | Zbl
[4] V. I. Gurarii, “Lineinoe prostranstvo sostoyaschee iz vsyudu nedifferentsiruemykh funktsii”, C. R. Acad. Bulg. Sci., 44:5 (1991), 13–16 | MR | Zbl
[5] L. Rodriguez-Piazza, “Every separable Banach space is isometric to a space of continuous nowhere differentiable functions”, Proc. Amer. Math. Soc., 123:12 (1995), 3649–3654 | DOI | MR | Zbl
[6] E. I. Berezhnoi, “Podprostranstvo $C[0,1]$, sostoyaschee iz funktsii, ne imeyuschikh konechnykh odnostoronnikh proizvodnykh ni v odnoi tochke”, Matem. zametki, 73:3 (2003), 348–354 | MR | Zbl
[7] E. I. Berezhnoi, “Podprostranstvo prostranstva Gëldera, sostoyaschee iz samykh negladkikh funktsii”, Matem. zametki, 74:3 (2003), 329–339 | MR | Zbl
[8] E. I. Berezhnoi, “O podprostranstvakh prostranstv Gëldera, sostoyaschikh iz funktsii minimalnoi gladkosti”, Dokl. RAN, 399:4 (2004), 446–449 | MR