On the Normability of Marcinkiewicz Classes
Matematičeskie zametki, Tome 81 (2007) no. 4, pp. 483-489.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain simple necessary and sufficient conditions for the normability of Marcinkiewicz classes, which play an important role in various problems of analysis. These conditions are stated in terms of dilation exponents of the function generating the given class as well as in terms of interpolation for operators bounded in the couple $(L_1,L_\infty)$.
Mots-clés : Marcinkiewicz class, interpolation, quasinorm
Keywords: normability, generating function, dilation exponent, Hardy–Littlewood operator, symmetric Banach space.
@article{MZM_2007_81_4_a0,
     author = {S. V. Astashkin},
     title = {On the {Normability} of {Marcinkiewicz} {Classes}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {483--489},
     publisher = {mathdoc},
     volume = {81},
     number = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_4_a0/}
}
TY  - JOUR
AU  - S. V. Astashkin
TI  - On the Normability of Marcinkiewicz Classes
JO  - Matematičeskie zametki
PY  - 2007
SP  - 483
EP  - 489
VL  - 81
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_81_4_a0/
LA  - ru
ID  - MZM_2007_81_4_a0
ER  - 
%0 Journal Article
%A S. V. Astashkin
%T On the Normability of Marcinkiewicz Classes
%J Matematičeskie zametki
%D 2007
%P 483-489
%V 81
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_81_4_a0/
%G ru
%F MZM_2007_81_4_a0
S. V. Astashkin. On the Normability of Marcinkiewicz Classes. Matematičeskie zametki, Tome 81 (2007) no. 4, pp. 483-489. http://geodesic.mathdoc.fr/item/MZM_2007_81_4_a0/

[1] G. G. Lorentz, “Some new functional spaces”, Ann. of Math. (2), 51:1 (1950), 37–55 | DOI | MR | Zbl

[2] S. G. Krein, Yu. I. Petunin, E. M. Semenov, Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR | Zbl

[3] M. J. Carro, J. Soria, “Weighted Lorentz spaces and the Hardy operator”, J. Funct. Anal., 112:2 (1993), 480–494 | DOI | MR | Zbl

[4] J. Soria, “Lorentz spaces of weak type”, Quart. J. Math. Oxford (2), 49 (1998), 93–103 | DOI | MR | Zbl

[5] M. J. Carro, J. Raposo, J. Soria, Recent developments in the theory of Lorentz spaces and weighted inequalities, arXiv: math.CA/0010010 | MR

[6] C. Bennett, R. Sharpley, Interpolation of Operators, Academic Press, Boston, 1988 | MR | Zbl

[7] N. K. Bari, S. B. Stechkin, “Nailuchshie priblizheniya i differentsialnye svoistva dvukh sopryazhennykh funktsii”, Tr. MMO, 5 (1956), 483–522 | MR | Zbl

[8] A. P. Calderon, “Spaces between $L_1$ and $L_\infty$ and the theorem of Marcinkiewicz”, Studia Math., 26 (1966), 273–299 | MR | Zbl

[9] B. S. Mityagin, “Interpolyatsionnaya teorema dlya modulyarnykh prostranstv”, Matem. sb., 66 (108):4 (1965), 473–482 | MR | Zbl