The $\pi$-$\pi$-Theorem for Manifold Pairs
Matematičeskie zametki, Tome 81 (2007) no. 3, pp. 405-416.

Voir la notice de l'article provenant de la source Math-Net.Ru

The surgery obstruction of a normal map to a simple Poincaré pair $(X,Y)$ lies in the relative surgery obstruction group $L_*(\pi_1(Y)\to\pi_1(X))$. A well-known result of Wall, the so-called $\pi$-$\pi$-theorem, states that in higher dimensions a normal map of a manifold with boundary to a simple Poincaré pair with $\pi_1(X)\cong\pi_1(Y)$ is normally bordant to a simple homotopy equivalence of pairs. In order to study normal maps to a manifold with a submanifold, Wall introduced the surgery obstruction groups $LP_*$ for manifold pairs and splitting obstruction groups $LS_*$. In the present paper, we formulate and prove for manifold pairs with boundaries results similar to the $\pi$-$\pi$-theorem. We give direct geometric proofs, which are based on the original statements of Wall's results and apply obtained results to investigate surgery on filtered manifolds.
Keywords: surgery obstruction groups, surgery on manifold pairs, normal maps, splitting obstruction groups, $\pi$-$\pi$-theorem.
Mots-clés : homotopy triangulation
@article{MZM_2007_81_3_a8,
     author = {Yu. V. Muranov and D. Repov\v{s} and M. Cencelj},
     title = {The $\pi$-$\pi${-Theorem} for {Manifold} {Pairs}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {405--416},
     publisher = {mathdoc},
     volume = {81},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_3_a8/}
}
TY  - JOUR
AU  - Yu. V. Muranov
AU  - D. Repovš
AU  - M. Cencelj
TI  - The $\pi$-$\pi$-Theorem for Manifold Pairs
JO  - Matematičeskie zametki
PY  - 2007
SP  - 405
EP  - 416
VL  - 81
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_81_3_a8/
LA  - ru
ID  - MZM_2007_81_3_a8
ER  - 
%0 Journal Article
%A Yu. V. Muranov
%A D. Repovš
%A M. Cencelj
%T The $\pi$-$\pi$-Theorem for Manifold Pairs
%J Matematičeskie zametki
%D 2007
%P 405-416
%V 81
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_81_3_a8/
%G ru
%F MZM_2007_81_3_a8
Yu. V. Muranov; D. Repovš; M. Cencelj. The $\pi$-$\pi$-Theorem for Manifold Pairs. Matematičeskie zametki, Tome 81 (2007) no. 3, pp. 405-416. http://geodesic.mathdoc.fr/item/MZM_2007_81_3_a8/

[1] C. T. C. Wall, Surgery on Compact Manifolds, 2nd edition, Mathematical Surveys and Monographs, 69, ed. A. A. Ranicki, Amer. Math. Soc., Providence, RI, 1999 | MR | Zbl

[2] A. A. Ranicki, Exact Sequences in the Algebraic Theory of Surgery, Math. Notes, 26, Princeton Univ. Press, Princeton, 1981 | MR | Zbl

[3] W. Browder, F. Quinn, “A surgery theory for $G$-manifolds and stratified spaces”, Manifolds, Proc. Internat. Conf. (Tokyo, 1973), Univ. Tokyo Press, 1975, 27–36 | MR | Zbl

[4] Yu. V. Muranov, D. Repovsh, R. Khimenez, “Spektralnaya posledovatelnost v teorii perestroek i mnogoobraziya s filtratsiei”, Tr. MMO, 67, 2006, 294–325 | MR | Zbl

[5] S. Weinberger, The Topological Classification of Stratified Spaces, Chicago Lectures in Mathematics, Univ. Chicago Press, Chicago, IL, 1994 | MR | Zbl

[6] S. Lopez de Medrano, Involutions on Manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete, 69, Springer-Verlag, Berlin–Heidelberg–New York, 1971 | MR | Zbl

[7] M. M. Cohen, A Course in Simple-Homotopy Theory, Grad. Texts in Math., 10, Springer-Verlag, New York, 1973 | MR | Zbl

[8] Yu. V. Muranov, D. Repovsh, F. Spaggiari, “Perestroika troek mnogoobrazii”, Matem. sb., 194:8 (2003), 139–160 | MR | Zbl