Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2007_81_3_a8, author = {Yu. V. Muranov and D. Repov\v{s} and M. Cencelj}, title = {The $\pi$-$\pi${-Theorem} for {Manifold} {Pairs}}, journal = {Matemati\v{c}eskie zametki}, pages = {405--416}, publisher = {mathdoc}, volume = {81}, number = {3}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_3_a8/} }
Yu. V. Muranov; D. Repovš; M. Cencelj. The $\pi$-$\pi$-Theorem for Manifold Pairs. Matematičeskie zametki, Tome 81 (2007) no. 3, pp. 405-416. http://geodesic.mathdoc.fr/item/MZM_2007_81_3_a8/
[1] C. T. C. Wall, Surgery on Compact Manifolds, 2nd edition, Mathematical Surveys and Monographs, 69, ed. A. A. Ranicki, Amer. Math. Soc., Providence, RI, 1999 | MR | Zbl
[2] A. A. Ranicki, Exact Sequences in the Algebraic Theory of Surgery, Math. Notes, 26, Princeton Univ. Press, Princeton, 1981 | MR | Zbl
[3] W. Browder, F. Quinn, “A surgery theory for $G$-manifolds and stratified spaces”, Manifolds, Proc. Internat. Conf. (Tokyo, 1973), Univ. Tokyo Press, 1975, 27–36 | MR | Zbl
[4] Yu. V. Muranov, D. Repovsh, R. Khimenez, “Spektralnaya posledovatelnost v teorii perestroek i mnogoobraziya s filtratsiei”, Tr. MMO, 67, 2006, 294–325 | MR | Zbl
[5] S. Weinberger, The Topological Classification of Stratified Spaces, Chicago Lectures in Mathematics, Univ. Chicago Press, Chicago, IL, 1994 | MR | Zbl
[6] S. Lopez de Medrano, Involutions on Manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete, 69, Springer-Verlag, Berlin–Heidelberg–New York, 1971 | MR | Zbl
[7] M. M. Cohen, A Course in Simple-Homotopy Theory, Grad. Texts in Math., 10, Springer-Verlag, New York, 1973 | MR | Zbl
[8] Yu. V. Muranov, D. Repovsh, F. Spaggiari, “Perestroika troek mnogoobrazii”, Matem. sb., 194:8 (2003), 139–160 | MR | Zbl