Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2007_81_3_a6, author = {A. E. Mironov}, title = {On a {Family} of {Conformally} {Flat} {Minimal} {Lagrangian} {Tori} in $\mathbb CP^3$}, journal = {Matemati\v{c}eskie zametki}, pages = {374--384}, publisher = {mathdoc}, volume = {81}, number = {3}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_3_a6/} }
A. E. Mironov. On a Family of Conformally Flat Minimal Lagrangian Tori in $\mathbb CP^3$. Matematičeskie zametki, Tome 81 (2007) no. 3, pp. 374-384. http://geodesic.mathdoc.fr/item/MZM_2007_81_3_a6/
[1] I. Castro, F. Urbano, “New examples of minimal Lagrangian tori in the complex projective plane”, Manuscripta Math., 85:3–4 (1994), 265–281 | DOI | MR | Zbl
[2] D. Joyce, “Special Lagrangian 3-folds and integrable systems”, Adv. Studies in Pure Math. (to appear)
[3] R. A. Sharipov, “Minimalnye tory v pyatimernoi sfere v $\mathbb C^3$”, TMF, 87:1 (1991), 48–56 | MR | Zbl
[4] A. E. Mironov, “Ierarkhiya uravnenii Veselova–Novikova i integriruemye deformatsii minimalnykh lagranzhevykh torov v $\mathbb CP^2$”, Sib. elektron. matem. izv., 1 (2004), 38–46 | MR | Zbl
[5] A. E. Mironov, “O novykh primerakh gamiltonovo-minimalnykh i minimalnykh lagranzhevykh podmnogoobrazii v $\mathbb C^n$ i $\mathbb CP^n$”, Matem. sb., 195:1 (2004), 89–102 | MR | Zbl
[6] D. Joyce, “Special Lagrangian $m$-fold in $\mathbb C^m$ with symmetries”, Duke Math. J., 115:1 (2002), 1–51 | DOI | MR | Zbl
[7] I. Castro, L. Vrancken, “Minimal Lagrangian submanifolds in $\mathbb CP^3$ and the $\sinh$-Gordon equation”, Results Math., 40 (2001), 130–143 | MR | Zbl
[8] R. L. Bryant, “Conformal and minimal immersion into the 4-sphere”, J. Differential Geom., 17:3 (1982), 455–473 | MR | Zbl