Singular Strictly Increasing Functions and a Problem on Partitions of Closed Intervals
Matematičeskie zametki, Tome 81 (2007) no. 3, pp. 341-347
Cet article a éte moissonné depuis la source Math-Net.Ru
We establish that the problem of constructing a strictly increasing singular function is equivalent to the problem of constructing subsets $\mathscr P$ and $\mathscr Q$ of a closed interval $[a;b]\subset\mathbb R$ such that (1) $\mathscr P\cap\mathscr Q=\varnothing$; (2) $\mathscr P\cup\mathscr Q=[a;b]$; (3) the Lebesgue measures of the intersections of $\mathscr P$ and $\mathscr Q$ with an arbitrary interval $J\subset[a;b]$ are positive.
Keywords:
singular function, Cantor set, perfect set, heavily intermittent partition, Borel set, completely additive function.
Mots-clés : Lebesgue measurable set
Mots-clés : Lebesgue measurable set
@article{MZM_2007_81_3_a3,
author = {I. S. Kats},
title = {Singular {Strictly} {Increasing} {Functions} and a {Problem} on {Partitions} of {Closed} {Intervals}},
journal = {Matemati\v{c}eskie zametki},
pages = {341--347},
year = {2007},
volume = {81},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_3_a3/}
}
I. S. Kats. Singular Strictly Increasing Functions and a Problem on Partitions of Closed Intervals. Matematičeskie zametki, Tome 81 (2007) no. 3, pp. 341-347. http://geodesic.mathdoc.fr/item/MZM_2007_81_3_a3/
[1] I. P. Natanson, Teoriya funktsii veschestvennoi peremennoi, GITTL, M., 1957 | MR | Zbl
[2] S. Saks, Teoriya integrala, IL, M., 1973 | MR | Zbl
[3] I. S. Kats, “K voprosu o strukture singulyarnykh funktsii ogranichennoi variatsii”, UMN, 8:5 (1953), 157–159 | MR | Zbl
[4] A. A. Ryabinin, V. D. Bystritskii, V. A. Ilichev, “O sigulyarnykh strogo monotonnykh funktsiyakh”, Matem. zametki, 76:3 (2004), 439–451 | MR | Zbl
[5] E. Kamke, Integral Lebega–Stiltesa, GIFML, M., 1959 | MR | Zbl
[6] I. S. Kats, “Lokalnye svoistva klassicheskoi singulyarnoi funktsii i spektr struny”, Izv. vuzov. Ser. matem., 1993, no. 6, 17–21 | MR | Zbl