Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2007_81_3_a15, author = {A. V. Lebedev}, title = {On the {Bott--Borel--Weil} {Theorem}}, journal = {Matemati\v{c}eskie zametki}, pages = {474--477}, publisher = {mathdoc}, volume = {81}, number = {3}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_3_a15/} }
A. V. Lebedev. On the Bott--Borel--Weil Theorem. Matematičeskie zametki, Tome 81 (2007) no. 3, pp. 474-477. http://geodesic.mathdoc.fr/item/MZM_2007_81_3_a15/
[1] N. Burbaki, Gruppy i algebry Li, Gl. 7–8: Podalgebry Kartana, regulyarnye elementy, rasscheplyaemye poluprostye algebry Li, Mir, M., 1978 | MR | Zbl
[2] P. Woit, Differential geometric methods in theoretical physics. Physics and geometry (Davis, CA, 1988), NATO Adv. Sci. Inst. Ser. B Phys., 245, eds. C. Ling-Lie, W. Nahm, Plenum, New York, 1990, 533–545 ; Quantum field theory and representation theory: a sketch, arXiv: hep-th/0206135 | MR
[3] P. Grozman, D. Leites, The nonholonomic Riemann and Weyl tensors for flag manifolds, arXiv: math.DG/0509399
[4] A. Tolpygo, Homology Homotopy Appl., 6:1 (2004), 59–85 | MR | Zbl
[5] A. Lebedev, D. Leites, I. Shereshevskii, Lie Groups and Invariant Theory, Amer. Math. Soc. Transl. (2), 213, ed. É. Vinberg, Amer. Math. Soc., Providence, RI, 2005, 157–172 ; arXiv: math.KT/0404139 | MR | Zbl
[6] P. Grozman, D. Leites, Czech. J. Phys., 51:1 (2001), 1–22 ; arXiv: hep-th/9702073 | DOI | MR | Zbl
[7] P. Grozman, D. Leites, Czech. J. Phys., 54:11 (2004), 1313–1319 ; arXiv: math.RT/0509469 | DOI | MR
[8] P. Grozman, D. Leites, Contemporary Mathematical Physics, F. A. Berezin memorial volume, Amer. Math. Soc. Transl. (2), 175, eds. R. Dobrushin, R. Minlos, M. Shubin, and A. Vershik, Amer. Math. Soc., Providence, RI, 1996, 57–67 ; arXiv: math-ph/0510013 | MR | Zbl
[9] D. Leites, A. Sergeev, TMF, 123:2 (2000), 205–236 ; arXiv: math.RT/0509528 | MR | Zbl
[10] K. Zakse, TMF, 149:1 (2006), 3–17 | MR