Approximation of $1/x$ by Polynomials on $[-1,-a]\cup[a,1]$
Matematičeskie zametki, Tome 81 (2007) no. 3, pp. 472-473.

Voir la notice de l'article provenant de la source Math-Net.Ru

Mots-clés : polynomial approximation
Keywords: extremal polynomial, polynomial of least deviation, uniform metric.
@article{MZM_2007_81_3_a14,
     author = {I. A. Privalov},
     title = {Approximation of $1/x$ by {Polynomials} on $[-1,-a]\cup[a,1]$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {472--473},
     publisher = {mathdoc},
     volume = {81},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_3_a14/}
}
TY  - JOUR
AU  - I. A. Privalov
TI  - Approximation of $1/x$ by Polynomials on $[-1,-a]\cup[a,1]$
JO  - Matematičeskie zametki
PY  - 2007
SP  - 472
EP  - 473
VL  - 81
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_81_3_a14/
LA  - ru
ID  - MZM_2007_81_3_a14
ER  - 
%0 Journal Article
%A I. A. Privalov
%T Approximation of $1/x$ by Polynomials on $[-1,-a]\cup[a,1]$
%J Matematičeskie zametki
%D 2007
%P 472-473
%V 81
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_81_3_a14/
%G ru
%F MZM_2007_81_3_a14
I. A. Privalov. Approximation of $1/x$ by Polynomials on $[-1,-a]\cup[a,1]$. Matematičeskie zametki, Tome 81 (2007) no. 3, pp. 472-473. http://geodesic.mathdoc.fr/item/MZM_2007_81_3_a14/

[1] F. Steven, SIAM J. Matrix Anal. Appl., 12:4 (1991), 766–789 | DOI | MR | Zbl

[2] V. I. Lebedev, Funktsionalnyi analiz i vychislitelnaya matematika, VINITI, M., 1994

[3] N. I. Akhiezer, Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR | Zbl