On Weakly Quasipure Injective Groups
Matematičeskie zametki, Tome 81 (2007) no. 3, pp. 434-447.

Voir la notice de l'article provenant de la source Math-Net.Ru

An Abelian group is said to be weakly quasipure injective if every endomorphism of any pure subgroup of the group can be extended to an endomorphism of the group by itself. A description of the weakly quasipure injective groups in some classes of groups is obtained.
Keywords: pure subgroup, weakly quasipure injective group, (almost) completely decomposable subgroup.
Mots-clés : quasipure injective group, torsion-free group
@article{MZM_2007_81_3_a11,
     author = {A. R. Chekhlov},
     title = {On {Weakly} {Quasipure} {Injective} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {434--447},
     publisher = {mathdoc},
     volume = {81},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_3_a11/}
}
TY  - JOUR
AU  - A. R. Chekhlov
TI  - On Weakly Quasipure Injective Groups
JO  - Matematičeskie zametki
PY  - 2007
SP  - 434
EP  - 447
VL  - 81
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_81_3_a11/
LA  - ru
ID  - MZM_2007_81_3_a11
ER  - 
%0 Journal Article
%A A. R. Chekhlov
%T On Weakly Quasipure Injective Groups
%J Matematičeskie zametki
%D 2007
%P 434-447
%V 81
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_81_3_a11/
%G ru
%F MZM_2007_81_3_a11
A. R. Chekhlov. On Weakly Quasipure Injective Groups. Matematičeskie zametki, Tome 81 (2007) no. 3, pp. 434-447. http://geodesic.mathdoc.fr/item/MZM_2007_81_3_a11/

[1] L. Fuks, Beskonechnye abelevy gruppy, t. 1, Mir, M., 1974 ; т. 2, Мир, М., 1977 | MR | Zbl | MR | Zbl

[2] D. M. Arnold, B. O'Brien, J. D. Reid, “Quasi-pure injective and projective torsion-free abelian groups of finite rank”, Proc. London Math. Soc., 38:3 (1979), 532–544 | DOI | MR | Zbl

[3] Yu. B. Dobrusin, “Kvaziservantno in'ektivnye abelevy gruppy bez krucheniya”, Abelevy gruppy i moduli, Tomsk, 1980, 45–69 | MR | Zbl

[4] P. A. Krylov, “Nekotorye primery kvaziservantno in'ektivnykh i tranzitivnykh abelevykh grupp bez krucheniya”, Abelevy gruppy i moduli, 7, Tomsk, 1988, 81–99 | MR | Zbl

[5] P. A. Krylov, “Ob odnom klasse kvaziservantno in'ektivnykh abelevykh grupp”, Matem. zametki, 45:4 (1989), 53–58 | MR | Zbl

[6] A. R. Chekhlov, “Kvaziservantno in'ektivnye abelevy gruppy bez krucheniya”, Matem. zametki, 46:3 (1989), 93–99 | MR | Zbl

[7] A. R. Chekhlov, “Abelevy gruppy bez krucheniya konechnogo $p$-ranga s dopolnyaemymi zamknutymi servantnymi podgruppami”, Abelevy gruppy i moduli, 10, Tomsk, 1991, 157–178 | MR

[8] A. R. Chekhlov, “Kvaziservantno in'ektivnye abelevy gruppy bez krucheniya s nerazlozhimymi servantnymi podgruppami”, Matem. zametki, 68:4 (2000), 587–592 | MR | Zbl

[9] Yu. B. Dobrusin, “O prodolzhenii chastichnykh endomorfizmov abelevykh grupp bez krucheniya”, Abelevy gruppy i moduli, 4, Tomsk, 1986, 36–53 | Zbl

[10] A. R. Chekhlov, “Ob odnom klasse endotranzitivnykh grupp”, Matem. zametki, 69:6 (2001), 944–949 | MR | Zbl

[11] S. F. Kozhukhov, “Pochti vpolne razlozhimye abelevy gruppy bez krucheniya”, Abelevy gruppy i moduli, Tomsk, 1980, 91–101 | MR | Zbl