On Weakly Quasipure Injective Groups
Matematičeskie zametki, Tome 81 (2007) no. 3, pp. 434-447 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An Abelian group is said to be weakly quasipure injective if every endomorphism of any pure subgroup of the group can be extended to an endomorphism of the group by itself. A description of the weakly quasipure injective groups in some classes of groups is obtained.
Keywords: pure subgroup, weakly quasipure injective group, (almost) completely decomposable subgroup.
Mots-clés : quasipure injective group, torsion-free group
@article{MZM_2007_81_3_a11,
     author = {A. R. Chekhlov},
     title = {On {Weakly} {Quasipure} {Injective} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {434--447},
     year = {2007},
     volume = {81},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_3_a11/}
}
TY  - JOUR
AU  - A. R. Chekhlov
TI  - On Weakly Quasipure Injective Groups
JO  - Matematičeskie zametki
PY  - 2007
SP  - 434
EP  - 447
VL  - 81
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_81_3_a11/
LA  - ru
ID  - MZM_2007_81_3_a11
ER  - 
%0 Journal Article
%A A. R. Chekhlov
%T On Weakly Quasipure Injective Groups
%J Matematičeskie zametki
%D 2007
%P 434-447
%V 81
%N 3
%U http://geodesic.mathdoc.fr/item/MZM_2007_81_3_a11/
%G ru
%F MZM_2007_81_3_a11
A. R. Chekhlov. On Weakly Quasipure Injective Groups. Matematičeskie zametki, Tome 81 (2007) no. 3, pp. 434-447. http://geodesic.mathdoc.fr/item/MZM_2007_81_3_a11/

[1] L. Fuks, Beskonechnye abelevy gruppy, t. 1, Mir, M., 1974 ; т. 2, Мир, М., 1977 | MR | Zbl | MR | Zbl

[2] D. M. Arnold, B. O'Brien, J. D. Reid, “Quasi-pure injective and projective torsion-free abelian groups of finite rank”, Proc. London Math. Soc., 38:3 (1979), 532–544 | DOI | MR | Zbl

[3] Yu. B. Dobrusin, “Kvaziservantno in'ektivnye abelevy gruppy bez krucheniya”, Abelevy gruppy i moduli, Tomsk, 1980, 45–69 | MR | Zbl

[4] P. A. Krylov, “Nekotorye primery kvaziservantno in'ektivnykh i tranzitivnykh abelevykh grupp bez krucheniya”, Abelevy gruppy i moduli, 7, Tomsk, 1988, 81–99 | MR | Zbl

[5] P. A. Krylov, “Ob odnom klasse kvaziservantno in'ektivnykh abelevykh grupp”, Matem. zametki, 45:4 (1989), 53–58 | MR | Zbl

[6] A. R. Chekhlov, “Kvaziservantno in'ektivnye abelevy gruppy bez krucheniya”, Matem. zametki, 46:3 (1989), 93–99 | MR | Zbl

[7] A. R. Chekhlov, “Abelevy gruppy bez krucheniya konechnogo $p$-ranga s dopolnyaemymi zamknutymi servantnymi podgruppami”, Abelevy gruppy i moduli, 10, Tomsk, 1991, 157–178 | MR

[8] A. R. Chekhlov, “Kvaziservantno in'ektivnye abelevy gruppy bez krucheniya s nerazlozhimymi servantnymi podgruppami”, Matem. zametki, 68:4 (2000), 587–592 | MR | Zbl

[9] Yu. B. Dobrusin, “O prodolzhenii chastichnykh endomorfizmov abelevykh grupp bez krucheniya”, Abelevy gruppy i moduli, 4, Tomsk, 1986, 36–53 | Zbl

[10] A. R. Chekhlov, “Ob odnom klasse endotranzitivnykh grupp”, Matem. zametki, 69:6 (2001), 944–949 | MR | Zbl

[11] S. F. Kozhukhov, “Pochti vpolne razlozhimye abelevy gruppy bez krucheniya”, Abelevy gruppy i moduli, Tomsk, 1980, 91–101 | MR | Zbl