Estimate of the Norm of the Lagrange Interpolation Operator in a Multidimensional Sobolev Space
Matematičeskie zametki, Tome 81 (2007) no. 3, pp. 427-433
Cet article a éte moissonné depuis la source Math-Net.Ru
We obtain an estimate of the norm of the Lagrange interpolation operator in a multidimensional Sobolev space. It is shown that, under a suitable choice of the sequence of multi-indices, interpolation polynomials converge to the interpolated function and their rate of convergence is of the order of the best approximation of this function.
Keywords:
Lagrange interpolation operator, rate of convergence, best approximation, Sobolev space, Hilbert space.
Mots-clés : interpolation polynomial
Mots-clés : interpolation polynomial
@article{MZM_2007_81_3_a10,
author = {A. I. Fedotov},
title = {Estimate of the {Norm} of the {Lagrange} {Interpolation} {Operator} in a {Multidimensional} {Sobolev} {Space}},
journal = {Matemati\v{c}eskie zametki},
pages = {427--433},
year = {2007},
volume = {81},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_3_a10/}
}
A. I. Fedotov. Estimate of the Norm of the Lagrange Interpolation Operator in a Multidimensional Sobolev Space. Matematičeskie zametki, Tome 81 (2007) no. 3, pp. 427-433. http://geodesic.mathdoc.fr/item/MZM_2007_81_3_a10/