On Uniqueness Sets for Multiple Walsh Series
Matematičeskie zametki, Tome 81 (2007) no. 2, pp. 265-279.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study uniqueness sets for multiple Walsh series under $\rho$-regular (or bounded) convergence in rectangles. We prove that a countable set is a uniqueness set for such a series under this convergence. We construct a class of perfect uniqueness sets for multiple Walsh series under this convergence. We show that the notion of index of a perfect set does not solve the problem of whether this set belongs to the class of uniqueness sets. We note that the results of this paper remain valid for several rearranged multiple Walsh series.
Keywords: multiple Walsh series, $\rho$-regular convergence, uniqueness set ($U$-set), $M$-set, perfect set, Rademacher function.
@article{MZM_2007_81_2_a9,
     author = {M. G. Plotnikov},
     title = {On {Uniqueness} {Sets} for {Multiple} {Walsh} {Series}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {265--279},
     publisher = {mathdoc},
     volume = {81},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_2_a9/}
}
TY  - JOUR
AU  - M. G. Plotnikov
TI  - On Uniqueness Sets for Multiple Walsh Series
JO  - Matematičeskie zametki
PY  - 2007
SP  - 265
EP  - 279
VL  - 81
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_81_2_a9/
LA  - ru
ID  - MZM_2007_81_2_a9
ER  - 
%0 Journal Article
%A M. G. Plotnikov
%T On Uniqueness Sets for Multiple Walsh Series
%J Matematičeskie zametki
%D 2007
%P 265-279
%V 81
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_81_2_a9/
%G ru
%F MZM_2007_81_2_a9
M. G. Plotnikov. On Uniqueness Sets for Multiple Walsh Series. Matematičeskie zametki, Tome 81 (2007) no. 2, pp. 265-279. http://geodesic.mathdoc.fr/item/MZM_2007_81_2_a9/

[1] M. G. Plotnikov, Voprosy edinstvennosti dlya nekotorykh klassov dvumernykh ryadov Khaara, Dep. VINITI No 2213-V2001, VINITI, M., 2001

[2] N. Ya. Vilenkin, “Ob odnom klasse polnykh ortogonalnykh sistem”, Izv. AN SSSR. Ser. matem., 11:4 (1947), 363–400 | MR | Zbl

[3] A. A. Shneider, “O edinstvennosti razlozhenii funktsii po sisteme Uolsha”, Matem. sb., 24:2 (1949), 279–300 | MR | Zbl

[4] N. J. Fine, “On the Walsh functions”, Trans. Amer. Math. Soc., 65:3 (1949), 372–414 | DOI | MR | Zbl

[5] J. E. Coury, “A class of Walsh $M$-sets of measure zero”, J. Math. Anal. Appl., 31:2 (1970), 318–320 | DOI | MR | Zbl

[6] V. A. Skvortsov, “Ob $h$-mere $M$-mnozhestv dlya sistemy Uolsha”, Matem. zametki, 21:3 (1977), 335–340 | MR | Zbl

[7] V. A. Skvortsov, Voprosy edinstvennosti razlozheniya funktsii v ryady po sistemam Khaara i Uolsha i obobschennye integraly, Diss. ... d.f.-m.n., MGU, M., 1982

[8] Kh. O. Movsisyan, “O edinstvennosti dvoinykh ryadov po sistemam Khaara i Uolsha”, Izv. AN ArmSSR. Matem., 9:1 (1974), 40–61 | MR | Zbl

[9] V. A. Skvortsov, “O koeffitsientakh skhodyaschikhsya kratnykh ryadov Khaara i Uolsha”, Vestn. MGU. Ser. 1. Matem., mekh., 28:6 (1973), 77–79 | MR | Zbl

[10] S. F. Lukomskii, “O nekotorykh klassakh mnozhestv edinstvennosti kratnykh ryadov Uolsha”, Matem. sb., 180:7 (1989), 937–945 | MR | Zbl

[11] S. F. Lukomskii, “On a $U$-set for multiple Walsh series”, Anal. Math., 18:2 (1992), 127–138 | DOI | MR | Zbl

[12] G. N. Agaev, N. Ya. Vilenkin, G. M. Dzhafarli, A. I. Rubinshtein, Multiplikativnye sistemy funktsii i garmonicheskii analiz na nulmernykh gruppakh, ELM, Baku, 1981 | MR | Zbl

[13] B. I. Golubov, A. V. Efimov, V. A. Skvortsov, Ryady i preobrazovaniya Uolsha: teoriya i primenenie, Nauka, M., 1987 | MR | Zbl

[14] S. F. Lukomskii, Predstavlenie funktsii ryadami Uolsha i koeffitsienty skhodyaschikhsya ryadov Uolsha, Diss. ... d.f.-m.n., Saratov, 1996