Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2007_81_2_a7, author = {V. V. Kozhevnikov}, title = {On a {Variational} {Method} for {Univalent} {Functions}}, journal = {Matemati\v{c}eskie zametki}, pages = {240--250}, publisher = {mathdoc}, volume = {81}, number = {2}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_2_a7/} }
V. V. Kozhevnikov. On a Variational Method for Univalent Functions. Matematičeskie zametki, Tome 81 (2007) no. 2, pp. 240-250. http://geodesic.mathdoc.fr/item/MZM_2007_81_2_a7/
[1] V. D. Erokhin, “O konformnykh preobrazovaniyakh kolets i ob osnovnom bazise prostranstva funktsii, analiticheskikh v elementarnoi okrestnosti kontinuuma”, Dokl. AN SSSR, 120:4 (1958), 689–692 | MR | Zbl
[2] S. A. Gelfer, “O rasprostranenii variatsionnogo metoda Goluzina–Shiffera na mnogosvyaznye oblasti”, Dokl. AN SSSR, 142:3 (1962), 503–506 | MR | Zbl
[3] G. M. Goluzin, “Metod variatsii v konformnom otobrazhenii. I”, Matem. sb., 19 (1946), 203–236 | MR | Zbl
[4] V. V. Kozhevnikov, “Faktorizatsiya konformnykh otobrazhenii i variatsii odnolistnykh funktsii”, Dokl. RAN, 375:3 (2000), 305–306 | MR | Zbl
[5] V. V. Kozhevnikov, “Kusochno odnolistnye variatsii vtorogo poryadka”, Geometricheskii analiz i ego prilozheniya, Tezisy dokladov Volgogradskoi konferentsii, Izd-vo Volgogradskogo un-ta, Volgograd, 2004, 80–82
[6] V. V. Kozhevnikov, “Ob odnoi forme pryamogo variatsionnogo metoda dlya odnolistnykh funktsii”, Izv. vuzov. Ser. matem., 2004, no. 4, 28–37 | MR | Zbl
[7] K. I. Babenko, K teorii ekstremalnykh zadach dlya odnolistnykh funktsii klassa $S$, Tr. MIAN, 101, Nauka, M., 1972 | MR | Zbl