Rhin Integrals
Matematičeskie zametki, Tome 81 (2007) no. 2, pp. 226-239
Voir la notice de l'article provenant de la source Math-Net.Ru
We study a generalization of the integrals examined by G. Rhin, in the form of multiple integrals. These integrals yield rational approximations to the values of the Riemann zeta function. In a particular case, we obtain Apéry approximations used to prove the irrationality of the number $\zeta(3)$.
Keywords:
Rhin integral, Riemann zeta function, multiple integral, Apéry approximation, Beukers integral, hypergeometric function.
Mots-clés : polylogarithm
Mots-clés : polylogarithm
@article{MZM_2007_81_2_a6,
author = {S. A. Zlobin},
title = {Rhin {Integrals}},
journal = {Matemati\v{c}eskie zametki},
pages = {226--239},
publisher = {mathdoc},
volume = {81},
number = {2},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_2_a6/}
}
S. A. Zlobin. Rhin Integrals. Matematičeskie zametki, Tome 81 (2007) no. 2, pp. 226-239. http://geodesic.mathdoc.fr/item/MZM_2007_81_2_a6/