Binary Terms in Polynomial Representations of Boolean Functions
Matematičeskie zametki, Tome 81 (2007) no. 2, pp. 217-225.

Voir la notice de l'article provenant de la source Math-Net.Ru

Polynomial representations of Boolean functions by binary terms are considered. The construction of terms involves variables and residual functions. Special cases of such representations are the decomposition of a function with respect to variables, Zhegalkin polynomials, and representations of functions as sums of conjunctions of residual functions.
Keywords: representation of Boolean functions by binary terms, Zhegalkin polynomial, polynomial representation of Boolean functions.
@article{MZM_2007_81_2_a5,
     author = {A. S. Zinchenko and V. I. Panteleev},
     title = {Binary {Terms} in {Polynomial} {Representations} of {Boolean} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {217--225},
     publisher = {mathdoc},
     volume = {81},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_2_a5/}
}
TY  - JOUR
AU  - A. S. Zinchenko
AU  - V. I. Panteleev
TI  - Binary Terms in Polynomial Representations of Boolean Functions
JO  - Matematičeskie zametki
PY  - 2007
SP  - 217
EP  - 225
VL  - 81
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_81_2_a5/
LA  - ru
ID  - MZM_2007_81_2_a5
ER  - 
%0 Journal Article
%A A. S. Zinchenko
%A V. I. Panteleev
%T Binary Terms in Polynomial Representations of Boolean Functions
%J Matematičeskie zametki
%D 2007
%P 217-225
%V 81
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_81_2_a5/
%G ru
%F MZM_2007_81_2_a5
A. S. Zinchenko; V. I. Panteleev. Binary Terms in Polynomial Representations of Boolean Functions. Matematičeskie zametki, Tome 81 (2007) no. 2, pp. 217-225. http://geodesic.mathdoc.fr/item/MZM_2007_81_2_a5/

[1] G. S. Avsarkisyan, “Predstavlenie bulevykh funktsii summoi po modulyu 2 implikatsiei argumentov”, Avtomatika i vychislitelnaya tekhnika, 1977, no. 1, 8–11 | MR | Zbl

[2] Izbrannye voprosy bulevykh funktsii, eds. S. F. Vinokurov, N. A. Peryazev, Fizmatlit, M., 2001 | Zbl

[3] S. F. Vinokurov, N. A. Peryazev, “Razlozhenie bulevykh funktsii v summu proizvedenii sobstvennykh podfunktsii”, Diskret. matem., 5:3 (1993), 102–104 | MR | Zbl

[4] S. F. Vinokurov, V. I. Panteleev, “Polinomialnoe predstavlenie bulevykh funktsii s ispolzovaniem tolko ostatochnykh funktsii”, Trudy XII Baikalskoi mezhdunarodnoi konferentsii, 5, Irkutsk, 2001, 27–31