On the Denjoy--Luzin Definitions of the Function Classes $ACG$, $ACG^*$, $V\!BG$, and $V\!BG^*$
Matematičeskie zametki, Tome 81 (2007) no. 2, pp. 205-216.

Voir la notice de l'article provenant de la source Math-Net.Ru

An equivalent form of the Denjoy–Luzin definitions of the function classes $ACG$, $ACG^*$, $V\!BG$, and $V\!BG^*$ is suggested. Conditions sufficient for the variational measure and approximation variational measure to be semimoderated are obtained.
Keywords: $ACG$-function, $ACG^*$-function, $V\!BG$-function, $V\!BG^*$-function, $AC$-function, $AC^*$-function, $V\!B$-function, $V\!B^*$-function, variational measure, semimoderated measure.
@article{MZM_2007_81_2_a4,
     author = {Yu. A. Zhereb'ev},
     title = {On the {Denjoy--Luzin} {Definitions} of the {Function} {Classes} $ACG$, $ACG^*$, $V\!BG$, and $V\!BG^*$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {205--216},
     publisher = {mathdoc},
     volume = {81},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_2_a4/}
}
TY  - JOUR
AU  - Yu. A. Zhereb'ev
TI  - On the Denjoy--Luzin Definitions of the Function Classes $ACG$, $ACG^*$, $V\!BG$, and $V\!BG^*$
JO  - Matematičeskie zametki
PY  - 2007
SP  - 205
EP  - 216
VL  - 81
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_81_2_a4/
LA  - ru
ID  - MZM_2007_81_2_a4
ER  - 
%0 Journal Article
%A Yu. A. Zhereb'ev
%T On the Denjoy--Luzin Definitions of the Function Classes $ACG$, $ACG^*$, $V\!BG$, and $V\!BG^*$
%J Matematičeskie zametki
%D 2007
%P 205-216
%V 81
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_81_2_a4/
%G ru
%F MZM_2007_81_2_a4
Yu. A. Zhereb'ev. On the Denjoy--Luzin Definitions of the Function Classes $ACG$, $ACG^*$, $V\!BG$, and $V\!BG^*$. Matematičeskie zametki, Tome 81 (2007) no. 2, pp. 205-216. http://geodesic.mathdoc.fr/item/MZM_2007_81_2_a4/

[1] N. Lusin, “Sur les propriétés de l'intégrale de M. Denjoy”, C. R. Acad. Sci. Paris, 155 (1912), 1475–1477 | Zbl

[2] N. N. Luzin, Integral i trigonometricheskii ryad, GITTL, Moskva–Leningrad, 1951 | MR

[3] A. Denjoy, “Mémoire sur la totalisation des nombres dérivés non-sommables”, Ann. Sci. École Norm. Sup. (3), 33 (1916), 127–222 ; 34 (1917), 181–238 | MR | Zbl | MR

[4] A. Khintchine, “Sur une extension de l'intégrale de M. Denjoy”, C. R. Acad. Sci. Paris, 162 (1916), 287–291 | Zbl

[5] A. Khinchin, “O protsesse integrirovaniya Denjoy”, Matem. sb., 30:4 (1918), 543–557 | Zbl

[6] S. Saks, Teoriya integrala, Faktorial, M., 2004

[7] R. Gordon, The Integrals of Lebesgue, Denjoy, Perron and Henstock, Graduate Studies in Mathematics, 4, Amer. Math. Soc., Providence, R.I., 1994 | MR | Zbl

[8] J. Foran, “A note on Lusin's condition $(N)$”, Fund. Math., 90:2 (1976), 181–186 | MR | Zbl

[9] B. S. Thomson, “Derivation bases on the real line, I”, Real Anal. Exchange, 8:1 (1982/83), 67–207 | MR | Zbl

[10] I. P. Natanson, Teoriya funktsii veschestvennoi peremennoi, Lan, SPb, 1999

[11] V. I. Bogachev, Osnovy teorii mery, t. 1, 2, R Dynamics, Moskva–Izhevsk, 2003

[12] W. F. Pfeffer, “The Lebesgue and Denjoy–Perron integrals from a descriptive point of view”, Ricerche Mat., 48:2 (1999), 211–223 | MR | Zbl

[13] B. Bongiorno, L. Di Piazza, V. A. Skvortsov, “A new full descriptive characterization of Denjoy–Perron integral”, Real Anal. Exchange, 21:2 (1995/96), 656–663 | MR | Zbl

[14] W. F. Pfeffer, “On variations of functions of one real variable”, Comment. Math. Univ. Carolin., 38:1 (1997), 61–71 | MR | Zbl

[15] V. A. Skvortsov, “Variatsionnaya mera i dostatochnoe uslovie differentsiruemosti additivnoi funktsii intervala”, Vestn. MGU. Ser. 1. Matem., mekh., 1997, no. 2, 55–57 | MR | Zbl

[16] B. S. Thomson, “Some properties of variational measures”, Real Anal. Exchange, 24:2 (1998/99), 845–853 | MR | Zbl

[17] V. A. Skvortsov, “O kratnom integrale Perrona”, Vestn. MGU. Ser. 1. Matem., mekh., 2000, no. 2, 11–14 | MR | Zbl

[18] B. Bongiorno, L. Di Piazza, V. A. Skvortsov, “On variational measures related to some bases”, J. Math. Anal. Appl., 250:2 (2000), 533–547 | DOI | MR | Zbl

[19] L. Di Piazza, “Variational measures in the theory of the integration in $\mathbb R^m$”, Czechoslovak Math. J., 51:126 (2001), 95–110 | DOI | MR | Zbl

[20] V. A. Skvortsov, Y. Zherebyov, “On classes of functions generating absolutely continuous variational measures”, Real Anal. Exchange, 30:1 (2004/05), 361–372 | MR | Zbl

[21] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Fizmatlit, M., 2004 | Zbl

[22] V. Ene, “Characterizations of $AC^*G\cap\mathscr C$, $\underline{AC}^*\cap\mathscr C_i$, $AC$ and $\underline{AC}$ functions”, Real Anal. Exchange, 19:2 (1993/94), 491–509 | MR | Zbl

[23] V. Ene, Real Functions – Current Topics, Lect. Notes in Math., 1603, Springer-Verlag, 1995 | MR | Zbl

[24] V. Ene, “Characterizations of $V\!BG\cap(N)$”, Real Anal. Exchange, 23:2 (1997/98), 611–630 | MR | Zbl

[25] V. Ene, “Thomson's variational measure and nonabsolutely convergent integrals”, Real Anal. Exchange, 26:1 (2000/01), 35–49 | MR | Zbl

[26] B. S. Thomson, Real Functions, Lect. Notes in Math, 1170, Springer-Verlag, 1985 | MR | Zbl

[27] Yu. A. Zherebëv, “$VBG_q^*$-funktsii i $\sigma$-konechnye variatsionnye mery”, Vestn. MGU. Ser. 1. Matem., mekh., 2005, no. 6, 17–22 | MR | Zbl

[28] P. Svorovski, V. A. Skvortsov, “O variatsionnoi mere, opredelyaemoi approksimativnym differentsialnym bazisom”, Vestn. MGU. Ser. 1. Matem., mekh., 2002, no. 1, 54–57 | MR | Zbl