Goldbach's Ternary Problem Involving Prime Numbers Expressible by Given Quadratic Forms
Matematičeskie zametki, Tome 81 (2007) no. 2, pp. 193-204
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper, we solve Goldbach's ternary problem involving primes expressible by given primitive positive definite binary quadratic forms whose discriminants coincide with the discriminants of imaginary quadratic fields in which quadratic forms split into linear multipliers.
Keywords:
Goldbach's ternary problem, binary quadratic form, imaginary quadratic field, arithmetic progression, simple ideal, Dirichlet series.
@article{MZM_2007_81_2_a3,
author = {S. A. Gritsenko},
title = {Goldbach's {Ternary} {Problem} {Involving} {Prime} {Numbers} {Expressible} by {Given} {Quadratic} {Forms}},
journal = {Matemati\v{c}eskie zametki},
pages = {193--204},
year = {2007},
volume = {81},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_2_a3/}
}
S. A. Gritsenko. Goldbach's Ternary Problem Involving Prime Numbers Expressible by Given Quadratic Forms. Matematičeskie zametki, Tome 81 (2007) no. 2, pp. 193-204. http://geodesic.mathdoc.fr/item/MZM_2007_81_2_a3/
[1] Z. I. Borevich, I. R. Shafarevich, Teoriya chisel, Nauka, M., 1985 | MR | Zbl
[2] S. A. Gritsenko, “O funktsionalnom uravnenii odnogo arifmeticheskogo ryada Dirikhle”, Chebyshevskii sb., 4:2 (2003), 55–67 | MR | Zbl
[3] S. A. Gritsenko, “O raspredelenii norm prostykh idealov iz zadannogo klassa v arifmeticheskikh progressiyakh”, Zapiski nauch. sem. POMI, 322, 2005, 45–62 | MR | Zbl
[4] S. A. Gritsenko, “Otsenka lineinoi trigonometricheskoi summy po prostym chislam, predstavimym zadannoi kvadratichnoi formoi”, Chebyshevskii sb., 5:4 (2005), 82–87 | MR
[5] A. A. Karatsuba, Osnovy analiticheskoi teorii chisel, Nauka, M., 1983 | MR | Zbl