On an Evasion Problem on a Semi-Infinite Interval for a Class of Controlled Distributed Systems
Matematičeskie zametki, Tome 81 (2007) no. 2, pp. 294-303 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we study an evasion problem in systems described by equations of parabolic type. We consider four versions of constraints on the control parameters.
Keywords: pursuit and evasion problem, controlled distributed system, Hilbert space, parabolic differential equation, Cauchy problem.
@article{MZM_2007_81_2_a11,
     author = {N. Yu. Satimov and M. Tukhtasinov and S. K. Ismatkhodgaev},
     title = {On an {Evasion} {Problem} on a {Semi-Infinite} {Interval} for a {Class} of {Controlled} {Distributed} {Systems}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {294--303},
     year = {2007},
     volume = {81},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_2_a11/}
}
TY  - JOUR
AU  - N. Yu. Satimov
AU  - M. Tukhtasinov
AU  - S. K. Ismatkhodgaev
TI  - On an Evasion Problem on a Semi-Infinite Interval for a Class of Controlled Distributed Systems
JO  - Matematičeskie zametki
PY  - 2007
SP  - 294
EP  - 303
VL  - 81
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_81_2_a11/
LA  - ru
ID  - MZM_2007_81_2_a11
ER  - 
%0 Journal Article
%A N. Yu. Satimov
%A M. Tukhtasinov
%A S. K. Ismatkhodgaev
%T On an Evasion Problem on a Semi-Infinite Interval for a Class of Controlled Distributed Systems
%J Matematičeskie zametki
%D 2007
%P 294-303
%V 81
%N 2
%U http://geodesic.mathdoc.fr/item/MZM_2007_81_2_a11/
%G ru
%F MZM_2007_81_2_a11
N. Yu. Satimov; M. Tukhtasinov; S. K. Ismatkhodgaev. On an Evasion Problem on a Semi-Infinite Interval for a Class of Controlled Distributed Systems. Matematičeskie zametki, Tome 81 (2007) no. 2, pp. 294-303. http://geodesic.mathdoc.fr/item/MZM_2007_81_2_a11/

[1] F. L. Chernousko, “Ogranichennye upravleniya v sistemakh s raspredelennymi parametrami”, PMM, 56:5 (1992), 810–826 | MR | Zbl

[2] V. A. Ilin, “Granichnoe upravlenie protsessom kolebanii na dvukh kontsakh”, Dokl. RAN, 369:5 (1999), 592–596 | MR | Zbl

[3] A. G. Butkovskii, Metody upravleniya sistemami s raspredelennymi parametrami, Nauka, M., 1975 | Zbl

[4] S. A. Avdonin, S. A. Ivanov, Upravlyaemost sistem s raspredelennymi parametrami i semeistva eksponent, UMKVO, Kiev, 1989

[5] J.-L. Lions, “Exact controllability, stabilization and perturbations for distributed systems”, SIAM Rev., 30:1 (1988), 1–68 | DOI | MR | Zbl

[6] M. Tukhtasinov, “O nekotorykh zadachakh teorii differentsialnykh igr v sistemakh s raspredelennymi parametrami”, PMM, 59:6 (1995), 979–984 | MR | Zbl

[7] G. I. Ibragimov, “K zadache gruppovogo presledovaniya s integralnymi ogranicheniyami na upravleniya igrokov”, Matem. zametki, 70:2 (2001), 201–212 | MR | Zbl

[8] N. Yu. Satimov, “O zadache ukloneniya ot vstrechi v raspredelennykh upravlyaemykh sistemakh”, Trudy Mezhdunarodnoi konferentsii “Spektralnaya teoriya differentsialnykh operatorov i rodstvennye problemy”, Sterlitamak, 2003, 180–184

[9] N. Yu. Satimov, B. B. Rikhsiev, Metody resheniya zadachi ukloneniya ot vstrechi v matematicheskoi teorii upravleniya, “FAN”, Tashkent, 2000 | MR | Zbl

[10] N. Yu. Satimov, “Ob odnoi zadache ubeganiya v raspredelennykh sistemakh.”, Trudy Mezhdunarodnoi konferentsii “Sovremennye problemy matematicheskoi fiziki i informatsionnykh tekhnologii”, t. 2, Tashkent, 2003, 240–244

[11] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR | Zbl