On a Generalization of P\'olya's Theorem
Matematičeskie zametki, Tome 81 (2007) no. 2, pp. 280-293.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider generalizations of Pólya's theorem to the case of entire functions taking algebraic values at natural or integer points.
Keywords: Pólya's theorem on entire functions, entire function, algebraic number, maximum principle, Stirling's formula.
@article{MZM_2007_81_2_a10,
     author = {I. P. Rochev},
     title = {On a {Generalization} of {P\'olya's} {Theorem}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {280--293},
     publisher = {mathdoc},
     volume = {81},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_2_a10/}
}
TY  - JOUR
AU  - I. P. Rochev
TI  - On a Generalization of P\'olya's Theorem
JO  - Matematičeskie zametki
PY  - 2007
SP  - 280
EP  - 293
VL  - 81
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_81_2_a10/
LA  - ru
ID  - MZM_2007_81_2_a10
ER  - 
%0 Journal Article
%A I. P. Rochev
%T On a Generalization of P\'olya's Theorem
%J Matematičeskie zametki
%D 2007
%P 280-293
%V 81
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_81_2_a10/
%G ru
%F MZM_2007_81_2_a10
I. P. Rochev. On a Generalization of P\'olya's Theorem. Matematičeskie zametki, Tome 81 (2007) no. 2, pp. 280-293. http://geodesic.mathdoc.fr/item/MZM_2007_81_2_a10/

[1] M. Welter, “Sur un théorème de Gel'fond–Selberg et une conjecture de Bundschuh–Shiokawa”, Acta Arith., 116:4 (2005), 363–385 | DOI | MR | Zbl

[2] A. O. Gelfond, “O tselochislennosti analiticheskikh funktsii”, Dokl. AN SSSR, 81 (1951), 341–344 | MR | Zbl