Automorphisms of Free Groups and the Mapping Class Groups of Closed Compact Orientable Surfaces
Matematičeskie zametki, Tome 81 (2007) no. 2, pp. 163-173.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $N$ be the stabilizer of the word $w=s_1t_1s_1^{-1}t_1^{-1}\dots s_gt_gs_g^{-1}t_g^{-1}$ in the group of automorphisms $\operatorname{Aut}(F_{2g})$ of the free group with generators $\{s_i,t_i\}_{i=1,\dots,g}$. The fundamental group $\pi_1(\Sigma_g)$ of a two-dimensional compact orientable closed surface of genus $g$ in generators $\{s_i,t_i\}$ is determined by the relation $w=1$. In the present paper, we find elements $S_i,T_i\in N$ determining the conjugation by the generators $s_i$, $t_i$ in $\operatorname{Aut}(\pi_1(\Sigma_g))$. Along with an element $\beta\in N$, realizing the conjugation by $w$, they generate the kernel of the natural epimorphism of the group $N$ on the mapping class group $M_{g,0}=\operatorname{Aut}(\pi_1(\Sigma_g))/\operatorname{Inn}(\pi_1(\Sigma_g))$. We find the system of defining relations for this kernel in the generators $S_1$, …, $S_g$, $T_1$, …, $T_g$, $\alpha$. In addition, we have found a subgroup in $N$ isomorphic to the braid group $B_g$ on $g$ strings, which, under the abelianizing of the free group $F_{2g}$, is mapped onto the subgroup of the Weyl group for $\operatorname{Sp}(2g,\mathbb{Z})$ consisting of matrices that contain only $0$ and $1$.
Keywords: mapping class group, closed compact orientable surface, fundamental group, homeomorphism, generators and defining relations.
Mots-clés : automorphism
@article{MZM_2007_81_2_a0,
     author = {S. I. Adian and F. Grunevald and J. Mennicke and A. L. Talambutsa},
     title = {Automorphisms of {Free} {Groups} and the {Mapping} {Class} {Groups} of {Closed} {Compact} {Orientable} {Surfaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {163--173},
     publisher = {mathdoc},
     volume = {81},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_2_a0/}
}
TY  - JOUR
AU  - S. I. Adian
AU  - F. Grunevald
AU  - J. Mennicke
AU  - A. L. Talambutsa
TI  - Automorphisms of Free Groups and the Mapping Class Groups of Closed Compact Orientable Surfaces
JO  - Matematičeskie zametki
PY  - 2007
SP  - 163
EP  - 173
VL  - 81
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_81_2_a0/
LA  - ru
ID  - MZM_2007_81_2_a0
ER  - 
%0 Journal Article
%A S. I. Adian
%A F. Grunevald
%A J. Mennicke
%A A. L. Talambutsa
%T Automorphisms of Free Groups and the Mapping Class Groups of Closed Compact Orientable Surfaces
%J Matematičeskie zametki
%D 2007
%P 163-173
%V 81
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_81_2_a0/
%G ru
%F MZM_2007_81_2_a0
S. I. Adian; F. Grunevald; J. Mennicke; A. L. Talambutsa. Automorphisms of Free Groups and the Mapping Class Groups of Closed Compact Orientable Surfaces. Matematičeskie zametki, Tome 81 (2007) no. 2, pp. 163-173. http://geodesic.mathdoc.fr/item/MZM_2007_81_2_a0/

[1] M. Dehn, “Die Gruppe der Abbildungsklassen”, Acta Math., 69 (1938), 135–206 | DOI | MR | Zbl

[2] W. B. R. Lickorish, “A finite set of generators for the homeotopy group of a 2-manifold”, Math. Proc. Cambridge Philos. Soc., 60 (1964), 769–778 ; “Corrigendum: On the homeotopy group of a 2-manifold”, Proc. Cambridge Philos. Soc., 62 (1966), 679–681 | DOI | MR | Zbl | DOI | MR | Zbl

[3] S. P. Humphries, “Generators for the mapping class group”, Topology of Low-Dimensional Manifolds, Proc. Second Sussex Conf. (Chelwood Gate, 1977), Lecture Notes in Math., 722, Springer, Berlin, 1979, 44–47 | MR | Zbl

[4] A. Hatcher, W. Thurston, “A presentation for the mapping class group of a closed orientable surface”, Topology, 19:3 (1980), 221–237 | DOI | MR | Zbl

[5] B. Wajnryb, “An elementary approach to the mapping class group of a surface”, Geom. Topol., 3 (1999), 405–466 | DOI | MR | Zbl

[6] Kh. Tsishang, E. Fogt, Kh.-D. Koldevai, Poverkhnosti i razryvnye gruppy, Nauka, M., 1988 | MR | Zbl

[7] V. Magnus, A. Karras, D. Soliter, Kombinatornaya teoriya grupp, Nauka, M., 1974 | MR | Zbl

[8] H. Zieschang, “A note on the mapping class groups of surfaces and planar discontinuous groups”, Low-Dimensional Topology (Chelwood Gate, 1982), London Math. Soc. Lecture Note Ser., 95, Cambridge Univ. Press,, Cambridge, 1985, 206–213 | MR | Zbl

[9] H. Seifert, “Topologie dreidimensionaler gefaserter Räume”, Acta Math., 60 (1933), 147–238 | DOI | MR | Zbl