Deformations of Functionals and Bifurcations of Extremals
Matematičeskie zametki, Tome 81 (2007) no. 1, pp. 70-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study homology characteristics of critical values and extremals of Lipschitz functionals defined on bounded closed convex subsets of a reflexive space that are invariant under deformations. Sufficient conditions for the existence of a bifurcation point of a multivalued potential operator (the switch principle for the typical number of an extremal) are established.
Keywords: Lipschitz functional, multivalued functional, extremal point.
@article{MZM_2007_81_1_a5,
     author = {V. S. Klimov},
     title = {Deformations of {Functionals} and {Bifurcations} of {Extremals}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {70--82},
     publisher = {mathdoc},
     volume = {81},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_1_a5/}
}
TY  - JOUR
AU  - V. S. Klimov
TI  - Deformations of Functionals and Bifurcations of Extremals
JO  - Matematičeskie zametki
PY  - 2007
SP  - 70
EP  - 82
VL  - 81
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_81_1_a5/
LA  - ru
ID  - MZM_2007_81_1_a5
ER  - 
%0 Journal Article
%A V. S. Klimov
%T Deformations of Functionals and Bifurcations of Extremals
%J Matematičeskie zametki
%D 2007
%P 70-82
%V 81
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_81_1_a5/
%G ru
%F MZM_2007_81_1_a5
V. S. Klimov. Deformations of Functionals and Bifurcations of Extremals. Matematičeskie zametki, Tome 81 (2007) no. 1, pp. 70-82. http://geodesic.mathdoc.fr/item/MZM_2007_81_1_a5/

[1] M. A. Krasnoselskii, P. P. Zabreiko, Geometricheskie metody nelineinogo analiza, Nauka, M., 1975 | MR | Zbl

[2] S. I. Pokhozhaev, “O razreshimosti nelineinykh uravnenii s nechetnymi operatorami”, Funktsion. analiz i ego prilozh., 1:3 (1967), 66–73 | MR | Zbl

[3] F. E. Browder, “Nonlinear elliptic boundary value problems and the generalized topological degree”, Bull. Amer. Math. Soc., 76:5 (1970), 999–1005 | DOI | MR | Zbl

[4] I. V. Skrypnik, Nelineinye ellipticheskie uravneniya vysshego poryadka, Naukova dumka, Kiev, 1973 | MR | Zbl

[5] N. A. Bobylev, S. V. Emelyanov, S. K. Korovin, Geometricheskie metody v variatsionnykh zadachakh, Izd-vo “Magistr”, M., 1998 | MR | Zbl

[6] V. S. Klimov, “O topologicheskikh kharakteristikakh negladkikh funktsionalov”, Izv. RAN. Ser. matem., 62:5 (1998), 117–134 | MR | Zbl

[7] B. C. Klimov, “Tipovye chisla kriticheskikh tochek negladkikh funktsionalov”, Matem. zametki, 72:5 (2002), 693–705 | MR | Zbl

[8] B. C. Klimov, N. V. Senchakova, “Ob otnositelnom vraschenii potentsialnykh vektornykh polei”, Matem. sb., 182:10 (1991), 1393–1407 | MR | Zbl

[9] Yu. G. Borisovich, B. D. Gelman, A. D. Myshkis, V. V. Obukhovskii, “Topologicheskie metody v teorii nepodvizhnykh tochek mnogoznachnykh otobrazhenii”, UMN, 35:1 (1980), 59–126 | MR | Zbl

[10] A. V. Dmitruk, A. A. Milyutin, N. P. Osmolovskii, “Teorema Lyusternika i teoriya ekstremuma”, UMN, 35:6 (1980), 11–46 | MR | Zbl

[11] F. Klark, Optimizatsiya i negladkii analiz, Mir, M., 1988 | MR | Zbl

[12] A. Dold, Lektsii po algebraicheskoi topologii, Mir, M., 1976 | MR | Zbl

[13] U. Massi, Teoriya gomologii i kogomologii, Mir, M., 1981 | MR | Zbl

[14] M. M. Postnikov, Vvedenie v teoriyu Morsa, Nauka, M., 1971 | MR | Zbl

[15] P. I. Plotnikov, “Needinstvennost reshenii zadachi ob uedinennykh volnakh i bifurkatsii kriticheskikh tochek gladkikh funktsionalov”, Izv. AN SSSR. Ser. matem., 55:2 (1991), 339–366 | MR | Zbl

[16] Yu. I. Sapronov, “Konechnomernye reduktsii v gladkikh ekstremalnykh zadachakh”, UMN, 51:1 (1996), 101–132 | MR | Zbl