On the Injectivity of the Local Pompeiu Transform on the Sphere
Matematičeskie zametki, Tome 81 (2007) no. 1, pp. 59-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a description of the kernel of the local Pompeiu transform for some families of distributions on the sphere.
Mots-clés : local Pompeiu transform
Keywords: injectivity of local Pompeiu transform, Riemannian two-point homogenous space, Legendre function.
@article{MZM_2007_81_1_a4,
     author = {V. V. Volchkov},
     title = {On the {Injectivity} of the {Local} {Pompeiu} {Transform} on the {Sphere}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {59--69},
     publisher = {mathdoc},
     volume = {81},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_1_a4/}
}
TY  - JOUR
AU  - V. V. Volchkov
TI  - On the Injectivity of the Local Pompeiu Transform on the Sphere
JO  - Matematičeskie zametki
PY  - 2007
SP  - 59
EP  - 69
VL  - 81
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_81_1_a4/
LA  - ru
ID  - MZM_2007_81_1_a4
ER  - 
%0 Journal Article
%A V. V. Volchkov
%T On the Injectivity of the Local Pompeiu Transform on the Sphere
%J Matematičeskie zametki
%D 2007
%P 59-69
%V 81
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_81_1_a4/
%G ru
%F MZM_2007_81_1_a4
V. V. Volchkov. On the Injectivity of the Local Pompeiu Transform on the Sphere. Matematičeskie zametki, Tome 81 (2007) no. 1, pp. 59-69. http://geodesic.mathdoc.fr/item/MZM_2007_81_1_a4/

[1] S. Khelgason, Gruppy i geometricheskii analiz, Mir, M., 1987 | MR | Zbl

[2] K. A. Berenstein, D. Struppa, “Kompleksnyi analiz i uravneniya v svertkakh”, Itogi nauki i tekhn. Sovr. probl. matem. Fundament. napravleniya, 54, VINITI, M., 1989, 5–111 | MR | Zbl

[3] L. Zalcman, “A bibliographic survey of the Pompeiu problem”, Approximation by Solutions of Partial Differential Equations, eds. B. Fuglede et al., Kluwer Acad. Publ., Dordrecht, 1992, 185–194 | MR | Zbl

[4] L. Zalcman, “Supplementary bibliography to “A bibliographic survey of the Pompeiu problem” ”, Radon Transforms and Tomography, Contemp. Math., 278, Amer. Math. Soc., Providence, RI, 2001, 69–74 | MR | Zbl

[5] V. V. Volchkov, Integral Geometry and Convolution Equations, Kluwer Acad. Publ., Dordrecht–Boston–London, 2003 | MR | Zbl

[6] Vit. V. Volchkov, “Teoremy ob in'ektivnosti lokalnogo preobrazovaniya Pompeiyu na sfere”, Dokl. RAN, 393:3 (2003), 309–311 | MR

[7] Vit. V. Volchkov, “Analogi lokalnogo preobrazovaniya Pompeiyu na sfere”, Dop. NAN Ukraïni, 2004, no. 2, 11–14 | MR | Zbl

[8] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, t. 1, 2-e izd., Nauka, M., 1973 | MR | Zbl

[9] V. V. Volchkov, “Reshenie problemy nositelya dlya nekotorykh klassov funktsii”, Matem. sb., 188:9 (1997), 13–30 | MR | Zbl

[10] V. V. Volchkov, “Sharovye srednie na simmetricheskikh prostranstvakh”, Dop. NAN Ukraïni, 2002, no. 3, 15–19 | MR | Zbl

[11] P. K. Suetin, Klassicheskie ortogonalnye mnogochleny, Nauka, M., 1979 | MR | Zbl

[12] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, t. 2, 2-e izd., Nauka, M., 1974 | MR | Zbl