Quantization of Periodic Motions on Compact Surfaces of Constant Negative Curvature in a Magnetic Field
Matematičeskie zametki, Tome 81 (2007) no. 1, pp. 32-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

We use the semiclassical approach to study the spectral problem for the Schrödinger operator of a charged particle confined to a two-dimensional compact surface of constant negative curvature. We classify modes of classical motion in the integrable domain $E$ and obtain a classification of semiclassical solutions as a consequence. We construct a spectral series (spectrum part approximated by semiclassical eigenvalues) corresponding to energies not exceeding the threshold value $E_{\textup{cr}}$; the degeneration multiplicity is computed for each eigenvalue.
Keywords: Schrödinger equation, eigenvalue asymptotics, semiclassical approximation, confined classical motion, surface of negative curvature, symplectic structure.
@article{MZM_2007_81_1_a2,
     author = {J. Br\"uning and R. V. Nekrasov and A. I. Shafarevich},
     title = {Quantization of {Periodic} {Motions} on {Compact} {Surfaces} of {Constant} {Negative} {Curvature} in a {Magnetic} {Field}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {32--42},
     publisher = {mathdoc},
     volume = {81},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_1_a2/}
}
TY  - JOUR
AU  - J. Brüning
AU  - R. V. Nekrasov
AU  - A. I. Shafarevich
TI  - Quantization of Periodic Motions on Compact Surfaces of Constant Negative Curvature in a Magnetic Field
JO  - Matematičeskie zametki
PY  - 2007
SP  - 32
EP  - 42
VL  - 81
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_81_1_a2/
LA  - ru
ID  - MZM_2007_81_1_a2
ER  - 
%0 Journal Article
%A J. Brüning
%A R. V. Nekrasov
%A A. I. Shafarevich
%T Quantization of Periodic Motions on Compact Surfaces of Constant Negative Curvature in a Magnetic Field
%J Matematičeskie zametki
%D 2007
%P 32-42
%V 81
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_81_1_a2/
%G ru
%F MZM_2007_81_1_a2
J. Brüning; R. V. Nekrasov; A. I. Shafarevich. Quantization of Periodic Motions on Compact Surfaces of Constant Negative Curvature in a Magnetic Field. Matematičeskie zametki, Tome 81 (2007) no. 1, pp. 32-42. http://geodesic.mathdoc.fr/item/MZM_2007_81_1_a2/

[1] I. A. Taimanov, On an example of a transition from chaos to integrability for magnetic geodesic flows, arXiv: math.DS/0312430v2

[2] J. Bolte, F. Steiner, “Flux quantization and quantum mechanics on Riemann surfaces in an external magnetic field”, J. Phys. A, 24:16 (1991), 3817–3823 | DOI | MR | Zbl

[3] E. V. Ferapontov, A. P. Veselov, “Integrable Schrödinger operators with magnetic fields: factorization method on curved surfaces”, J. Math. Phys., 42:2 (2001), 590–607 | DOI | MR | Zbl

[4] A. Comtet, “On the Landau levels on the hyperbolic plane”, Ann. Phys., 173:1 (1987), 185–209 | DOI | MR | Zbl

[5] G. A. Hedlund, “Fuchsian groups and transitive horocycles”, Duke Math. J., 2:3 (1936), 530–542 | DOI | MR | Zbl

[6] A. Comtet, P. J. Houston, “Effective action on the hyperbolic plane in a constant external field”, J. Math. Phys., 26:1 (1985), 185–191 | DOI | MR

[7] M. V. Karasev, V. P. Maslov, Nelineinye skobki Puassona. Geometriya i kvantovanie, Nauka, M., 1991 | MR | Zbl

[8] V. P. Maslov, Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nauka, M., 1977 | MR | Zbl

[9] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR | Zbl

[10] A. V. Bolsinov, A. T. Fomenko, Vvedenie v topologiyu integriruemykh gamiltonovykh sistem, Nauka, M., 1997 | MR | Zbl